Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. (65/205)

This study characterizes the transcriptional expression of the reductive dehalogenase (RDase)-encoding tceA and vcrA genes and evaluates their applicability as potential biological markers of Dehalococcoides activity. When Dehalococcoides ethenogenes 195 was provided with trichloroethene (TCE) as the electron acceptor, the expression of the tceA gene increased by 90-fold relative to that in cells starved of chlorinated ethenes, demonstrating that tceA gene expression is indicative of the active physiological state of this strain. In a Dehalococcoides-containing enrichment culture that contains both the tceA and vcrA genes, the tceA gene was up-regulated in response to TCE and cis-1,2-dichloroethene (cDCE) exposure, while the vcrA gene was up-regulated in response to TCE, cDCE, and vinyl chloride (VC). When chlorinated ethenes were depleted, the RDase-encoding gene transcripts decayed exponentially, with a half-life between 4.8 and 6.1 h, until they reached a stable background level after 2 days. We found that while gene expression correlated generally to the presence of chlorinated ethenes, there was no apparent direct relationship between RDase-encoding transcript numbers and respective rates of TCE, cDCE, and VC dechlorination activities. However, elevated tceA and vcrA expression did correlate with chlorinated-ethene reduction beyond cDCE, suggesting that elevated RDase-encoding transcript numbers could serve as a biomarker for the physiological ability of Dehalococcoides spp. to dechlorinate beyond cDCE.  (+info)

Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare? (66/205)

Methanotrophs have been widely investigated for in situ bioremediation due to their ubiquity and their ability to degrade halogenated hydrocarbons through the activity of methane monooxygenase (MMO). It has been speculated that cells expressing the soluble form of MMO (sMMO) are more efficient in cleaning up sites polluted with halogenated hydrocarbons due to its broader substrate range and relatively fast degradation rates compared cells expressing the other form of MMO, the particulate MMO (pMMO). To examine this issue, the biodegradation of mixtures of chlorinated solvents, i.e., trichloroethylene (TCE), trans-dichloroethylene (t-DCE), and vinyl chloride (VC), by Methylosinus trichosporium OB3b in the presence of methane using either form of MMO was investigated over longer time frames than those commonly used, i.e., days instead of hours. Growth of M. trichosporium OB3b along with pollutant degradation were monitored and analyzed using a simple comparative model developed from the Omega model created for analysis of the competitive binding of oxygen and carbon dioxide by ribulose bisphosphate carboxylase. From these findings, it appears that at concentrations of VC, t-DCE, and TCE greater than 10 microM each, methanotrophs expressing pMMO have a competitive advantage over cells expressing sMMO due to higher growth rates. Despite such an apparent growth advantage, pMMO-expressing cells degraded less of these substrates at these concentrations than sMMO-expressing cells during active growth. If the concentrations were increased to 100 muM, however, not only did pMMO-expressing cells grow faster, they degraded more of these pollutants and did so in a shorter amount of time. These findings suggest that the relative rates of growth substrate and pollutant degradation are important factors in determining which form of MMO should be considered for pollutant degradation.  (+info)

Molecular mechanisms of carcinogenesis by vinyl chloride. (67/205)

In 1974 vinyl chloride (VC), a gas used in the plastics industry, was shown to be a human carcinogen, inducing a very rare type of tumor, angiosarcoma of the liver. The same type of tumor was induced in rodents exposed to VC thus providing an excellent model for mechanistic studies. Here, we review the numerous studies on the mechanism of action of VC with particular emphasis on the DNA products induced by this strong alkylating agent. In particular, the genotoxicity, repair mechanisms, in vivo formation and tumor mutation spectra by etheno-adducts will be analysed and possible approaches for future research suggested.  (+info)

Hepatic drug metabolism and adverse hepatic drug reactions. (68/205)

Drugs and other chemicals are usually metabolized in the liver in the drug-metabolizing enzyme system. The metabolites sometimes bind with cellular macromolecules and injure the cell directly or serve as new antigens to create immunologic injury in a delayed fashion. The immediate or toxic injury is dose-dependent, predictable and zonal in the liver lobule, usually in the central region. Carbon tetrachloride intoxication and acetaminophen overdose are examples of injury resulting from microsomal metabolism. Other injuries related to microsomal metabolism are those produced by vinyl chloride in polymerization plant workers and by methotrexate in psoriatics or leukemic children. Most adverse drug reactions affecting the liver and producing jaundice are unpredictable, delayed in onset, and only hypothetically related to microsomal metabolism in some instances. The two main types are cholestasis and viral-hepatitis-like. The former may be in a pure form, in which case it may be partly dose-dependent, or in a form mixed with hepatitis. Many drugs produce cholestasis in a small percentage of persons, and because the reaction is benign, albeit prolonged at times, such drugs continue to be used. The viral-hepatitis-like reaction involves few drugs and affects few persons, but can be fatal. The recognition that chronic hepatitis can be caused by drugs such as oxyphenisatin, alpha-methyldopa, and isoniazid has added a new dimension to the clinical problem of adverse drug reactions, which may extend to widely used and commonly available agents like aspirin.  (+info)

Potential carcinogenicity of food additives and contaminants. (69/205)

The potential role in carcinogenesis of food additives and contaminants presents a complex problem in terms of assessing the risk to the general public. Long-term testing in laboratory animals is still the most feasible method for determining potential carcinogenicity of various chemicals. The disadvantages encountered in the present methods of animal testing are discussed and a review is made of the current status of particular food additives and contaminants under scrutiny as possible carcinogens. It is suggested that, since it may not be possible to remove all carcinogenic materials from the environment, methods to mitigate or neutralize their harmful effects should be sought. Greater cooperation is called for among food technologists, toxicologists, laboratory researchers, and epidemiologists in the decision-making process regarding the role of possibly carcinogenic additives and contaminants.  (+info)

Unusual codon bias in vinyl chloride reductase genes of Dehalococcoides species. (70/205)

Vinyl chloride reductases (VC-RDase) are the key enzymes for complete microbial reductive dehalogenation of chloroethenes, including the groundwater pollutants tetrachloroethene and trichloroethene. Analysis of the codon usage of the VC-RDase genes vcrA and bvcA showed that these genes are highly unusual and are characterized by a low G+C fraction at the third position. The third position of codons in VC-RDase genes is biased toward the nucleotide T, even though available Dehalococcoides genome sequences indicate the absence of any tRNAs matching codons that end in T. The comparatively high level of abnormality in the codon usage of VC-RDase genes suggests an evolutionary history that is different from that of most other Dehalococcoides genes.  (+info)

Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. (71/205)

Bacteria belonging to the genus Dehalococcoides play a key role in the complete detoxification of chloroethenes as these organisms are the only microbes known to be capable of dechlorination beyond dichloroethenes to vinyl chloride (VC) and ethene. However, Dehalococcoides strains usually grow slowly with a doubling time of 1 to 2 days and have complex nutritional requirements. Here we describe the growth of Dehalococcoides ethenogenes 195 in a defined mineral salts medium, improved growth of strain 195 when the medium was amended with high concentrations of vitamin B(12), and a strategy for maintaining Dehalococcoides strains on lactate by growing them in consortia. Although strain 195 could grow in defined medium spiked with approximately 0.5 mM trichloroethene (TCE) and 0.001 mg/liter vitamin B(12), the TCE dechlorination and cellular growth rates doubled when the vitamin B(12) concentration was increased 25-fold to 0.025 mg/liter. In addition, the final ratios of ethene to VC increased when the higher vitamin concentration was used, which reflected the key role that cobalamin plays in dechlorination reactions. No further improvement in dechlorination or growth was observed when the vitamin B(12) concentration was increased to more than 0.025 mg/liter. In defined consortia containing strain 195 along with Desulfovibrio desulfuricans and/or Acetobacterium woodii and containing lactate as the electron donor, tetrachloroethene ( approximately 0.4 mM) was completely dechlorinated to VC and ethene and there was concomitant growth of Dehalococcoides cells. In the cultures that also contained D. desulfuricans and/or A. woodii, strain 195 cells grew to densities that were 1.5 times greater than the densities obtained when the isolate was grown alone. The ratio of ethene to VC was highest in the presence of A. woodii, an organism that generates cobalamin de novo during metabolism. These findings demonstrate that the growth of D. ethenogenes strain 195 in defined medium can be optimized by providing high concentrations of vitamin B(12) and that this strain can be grown to higher densities in cocultures with fermenters that convert lactate to generate the required hydrogen and acetate and that may enhance the availability of vitamin B(12).  (+info)

Identification of polypeptides expressed in response to vinyl chloride, ethene, and epoxyethane in Nocardioides sp. strain JS614 by using peptide mass fingerprinting. (72/205)

Enzymes expressed in response to vinyl chloride, ethene, and epoxyethane by Nocardioides sp. strain JS614 were identified by using a peptide mass fingerprinting (PMF) approach. PMF provided insight concerning vinyl chloride biodegradation in strain JS614 and extends the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry as a tool to enhance characterization of biodegradation pathways.  (+info)