Use of thyrotropin and cholera toxin to probe the mechanism by which interferon initiates its antiviral activity. (49/2229)

Thyrotropin (10 muM) inhibited the antiviral activity of interferon. When added after interferon, thyrotropin (TSH) had no effect on antiviral activity. There was also no inhibition of interferon action in cells washed with medium between incubations with TSH and interferon. 125I-Labeled TSH and 125I-labeled cholera toxin could bind to preparations of mouse L-cell plasma membranes. The binding was specific in that it was prevented by unlabeled thyrotropin or cholera toxin, but not by insulin, glucagon, prolactin, growth hormone, human chorionic gonadotropin, or luteinizing hormone. Mouse interferon inhibited 125I-labeled TSH binding to L-cell plasma membranes. The effect of mouse interferon on 125I-labeled cholera toxon binding was more complex, inhibition occurring only after an initial enhancement at low interferon concentrations. A 10-fold higher concentration of interferon was required to inhibit 125I-labeled TSH binding. Mouse interferon was also able to displace bound 125I-labeled TSH, but not bound 125I-labeled cholera toxin. The interferon interaction with cell membranes was temperature-sensitive. Human interferon could induce changes in binding of 125I-labeled TSH and 125I-labeled cholera toxin to mouse L-cell plasma membranes similar to those induced by mouse interferon. Mouse interferon induced similar changes in plasma membranes of human KB-3 cells, which are insensitive to both human and mouse interferons. In view of these results, the species specificity of interferons does not appear to reside solely at the point of the initial interaction with their binding sites.  (+info)

Molecular characterization of Vibrio cholerae O1 and non-O1 from human and environmental sources in Malaysia. (50/2229)

A total of 31 strains of Vibrio cholerae O1 (10 from outbreak cases and 7 from surface water) and non-O1 (4 from clinical and 10 from surface water sources) isolated between 1993 and 1997 were examined with respect to presence of cholera enterotoxin (CT) gene by PCR-based assays, resistance to antibiotics, plasmid profiles and random amplified polymorphic DNA (RAPD) analysis. All were resistant to 9 or more of the 17 antibiotics tested. Identical antibiotic resistance patterns of the isolates may indicate that they share a common mode of developing antibiotic resistance. Furthermore, the multiple antibiotic resistance indexing showed that all strains tested originated from high risk contamination. Plasmid profile analysis by agarose gel electrophoresis showed the presence of small plasmids in 12 (7 non-O1 and 5 O1 serotypes) with sizes ranging 1.3-4.6 MDa. The CT gene was detected in all clinical isolates but was present in only 14 (6 O1 serotype and 8 non-O1 serotype) isolates from environmental waters. The genetic relatedness of the clinical and environmental Vibrio cholerae O1 and non-O1 strains was investigated by RAPD fingerprinting with four primers. The four primers generated polymorphisms in all 31 strains of Vibrio cholerae tested, producing bands ranging from < 250 to 4500 bp. The RAPD profiles revealed a wide variability and no correlation with the source of isolation. This study provides evidence that Vibrio cholerae O1 and non-O1 have significant public health implications.  (+info)

Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. (51/2229)

Ganglioside GM1 was isolated from the small intestinal mucosa of man, pig, and beef and amounted to 0.1, 2.0, and 43 nmol per g fresh weight, respectively. These differences in GM1 content were associated with a quantitatively differing ability of the mucosal cells to bind cholera toxin. Human cells bound about 15,000 toxin molecules when saturated with the toxin, porcine cells 120,000, and bovine cells 2,600,000 molecules. The association constant (KA) of the cholera toxin binding was, for cells of all three species, about 10(9) liters/mol. Exogenously added GM1 ganglioside was incorporated in intestinal mucosal cells as well as in intact rabbit small bowel. The increment in GM1 was associated with a correspondingly increased number of binding sites for cholera toxin, whereas KA was unchanged. GM1 incorporation increased the sensitivity of the rabbit small bowel to the diarrheogenic action of cholera toxin. Vibrio cholerae sialidase hydrolyzed isolated intestinal diand trisialogangliosides to GM1. However, the enzyme did not change the ganglioside pattern of intestinal mucosa, had very little influence on the number of toxin binding sites on intestinal cells, and did not alter the sensitivity of the small bowel to the diarrheogenic action of the toxin. These results demonstrate a relationship in the intestinal mucosa between the GM1 ganglioside concentration, the number of binding sites for cholera toxin, and the sensitivity to the biologic action of the toxin. Thus, the study strongly supports the concept that the GM1 ganglioside is the intestinal binding receptor for cholera toxin.  (+info)

Stimulation of epinephrine-sensitive fat cell adenylate cyclase by cytosol: effect of cholera toxin. (52/2229)

Cytosol prepared from rat epididymal fat cells by centrifugation at 100,000 X g for 1 hr was found to enhance the basal and epinephrine-sensitive adenylate cyclase [EC 4.6.1.1; ATP pyrophosphate-lyase (cyclizing)] of fat cell ghosts. Cholera toxin also stimulated adenylate cyclase and increased the response to epinephrine in fat cells. A possible relationship between the adenylate cyclase modifying activities of cytosol and the effects of cholera toxin was sought. Cytosol from freshly prepared fat cells added to ghosts prepared from cells that had been exposed to toxin for varying periods showed a progressive loss of responsiveness to cytosol epinephrine-enhancing activity. The effect appeared within 15 min after toxin exposure, a full 30 min before any direct effect of toxin on adenylate cyclase was seen. Since exposure to toxin decreased membrane response to cytosol epinephrine-enhancing activity, the possibility that epinephrine-enhancing activity in cytosol might be altered by toxin was explored. Cytosol from cells exposed to toxin for varying periods lost epinephrine-enhancing activity to an appreciable degree within 15 min. Examination of these early events after exposure to toxin should clarify the way in which this bacterial substance affects mammalian cells. The cytosol epinephrine-enhancing activity was destroyed by boiling for 3 min and was partially inactivated by trypsin. It was nondialyzable and stable at -70 degrees.  (+info)

Type-specific action of vibriocidal antibody on Vibrio cholerae. (53/2229)

The vibriocidal activity of Inaba and Ogawa antisera, from which cross-reacting agglutinin had been absorbed, was specific for Vibrio cholerae strains of the homologous serotype. No vibriocidal action against strains of the heterologous type was detected. The sera appeared to be equally effective in killing organisms of different biotypes (classical, intermediate, and EITor), provided that these were of the homologous serotype (Inaba or Ogawa). However, they had been raised against strains of the classical biotype only; and sera resulting from immunization with other biotypes had not been prepared. The implications of these findings in immunity to cholera are discussed.  (+info)

Mobility of cholera toxin receptors on rat lymphocyte membranes. (54/2229)

Fluorescein-labeled cholera toxin binds detectably to 40-60% of rat mesenteric lymph node cells and induces a temperature-dependent redistribution (patch and cap formation) of cell surface toxin receptors. The redistribution is inhibited by several "metabolic," "microtubule," and "microfilament" inhibitors, by concanavalin A, and by anticholera toxin IgG. Various studies indicate that cholera toxin is at least bivalent, and that this property may be related to both the induction of receptor redistribution and to the activation of adenylate cyclase. Membrane components which are probably identical to the sialo-glycolipid, GM1 ganglioside, appear to be mobile in the plane of the membrane. The possible role of toxin multivalency and receptor mobility in the mechanism of toxin action is considered.  (+info)

A multifunctional ATP-binding cassette transporter system from Vibrio cholerae transports vibriobactin and enterobactin. (55/2229)

Vibrio cholerae uses the catechol siderophore vibriobactin for iron transport under iron-limiting conditions. We have identified genes for vibriobactin transport and mapped them within the vibriobactin biosynthetic gene cluster. Within this genetic region we have identified four genes, viuP, viuD, viuG and viuC, whose protein products have homology to the periplasmic binding protein, the two integral cytoplasmic membrane proteins, and the ATPase component, respectively, of other iron transport systems. The amino-terminal region of ViuP has homology to a lipoprotein signal sequence, and ViuP could be labeled with [(3)H]palmitic acid. This suggests that ViuP is a membrane lipoprotein. The ViuPDGC system transports both vibriobactin and enterobactin in Escherichia coli. In the same assay, the E. coli enterobactin transport system, FepBDGC, allowed the utilization of enterobactin but not vibriobactin. Although the entire viuPDGC system could complement mutations in fepB, fepD, fepG, or fepC, only viuC was able to independently complement the corresponding fep mutation. This indicates that these proteins usually function as a complex. V. cholerae strains carrying a mutation in viuP or in viuG were constructed by marker exchange. These mutations reduced, but did not completely eliminate, vibriobactin utilization. This suggests that V. cholerae contains genes in addition to viuPDGC that function in the transport of catechol siderophores.  (+info)

Characterization of adhesive epitopes with the OmpS display system. (56/2229)

OmpS is an outer membrane protein of Vibrio cholerae where it forms trimeric pores that function in the uptake of maltose and maltodextrins. Based on sequence similarity to LamB proteins, a model of OmpS folding in the outer membrane has been constructed. According to this model, OmpS contains 18 transmembrane beta-strands and nine surface-accessible loops. Adhesive epitopes can, when inserted into surface-accessible loop 4 (L4) and expressed in Escherichia coli, retain their functional characteristics. We inserted three D-repeats from the Staphylococcus aureus fibronectin-binding protein FnBPA into L4 of OmpS and showed that E. coli cells expressing these hybrids bind fibronectin. DNA fragments covering the N-terminal half of the globoside-binding P-fimbrial adhesin class II PapG of E. coli were cloned into the same surface accessible loop (L4) of OmpS. Fragments of papG encoding 53 or 186 amino acids from the N-terminal end of class II PapG adhesin were found to confer bacterial adhesiveness to globoside. Removal of 23 amino acids from the N-terminus of PapG did not affect receptor binding, but removal of 31 amino acids abolished it. The newly developed night sky image technique was also used to demonstrate the binding properties of membrane vesicles carrying the hybrid proteins. We raised antibodies against the purified hybrid protein containing 53 amino acids from PapG. This antiserum recognized the P-fimbriae on E. coli cells. These data provide evidence that the N-terminal first 53 amino acids of class II PapG contain the receptor-binding domain.  (+info)