Qualitative and quantitative requirements for CD4+ T cell-mediated antiviral protection. (1/2088)

CD4+ Th cells deliver the cognate and cytokine signals that promote the production of protective virus-neutralizing IgG by specific B cells and are also able to mediate direct antiviral effector functions. To quantitatively and qualitatively analyze the antiviral functions of CD4+ Th cells, we generated transgenic mice (tg7) expressing an MHC class II (I-Ab)-restricted TCR specific for a peptide derived from the glycoprotein (G) of vesicular stomatitis virus (VSV). The elevated precursor frequency of naive VSV-specific Th cells in tg7 mice led to a markedly accelerated and enhanced class switching to virus-neutralizing IgG after immunization with inactivated VSV. Furthermore, in contrast to nontransgenic controls, tg7 mice rapidly cleared a recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G) from peripheral organs. By adoptive transfer of naive tg7 CD4+ T cells into T cell-deficient recipients, we found that 105 transferred CD4+ T cells were sufficient to induce isotype switching after challenge with a suboptimal dose of inactivated VSV. In contrast, naive transgenic CD4+ T cells were unable to adoptively confer protection against peripheral infection with Vacc-IND-G. However, tg7 CD4+ T cells that had been primed in vitro with VSV-G peptide were able to adoptively transfer protection against Vacc-IND-G. These results demonstrate that the antiviral properties of CD4+ T cells are governed by the differentiation status of the CD4+ T cell and by the type of effector response required for virus elimination.  (+info)

Foamy virus capsids require the cognate envelope protein for particle export. (2/2088)

Unlike other subclasses of the Retroviridae the Spumavirinae, its prototype member being the so-called human foamy virus (HFV), require the expression of the envelope (Env) glycoprotein for viral particle egress. Both the murine leukemia virus (MuLV) Env and the vesicular stomatitis virus G protein, which efficiently pseudotype other retrovirus capsids, were not able to support export of HFV particles. Analysis of deletion and point mutants of the HFV Env protein revealed that the HFV Env cytoplasmic domain (CyD) is dispensable for HFV particle envelopment, release, and infectivity, whereas deletion of the membrane-spanning-domain (MSD) led to an accumulation of naked capsids in the cytoplasm. Neither alternative membrane association of HFV Env deletion mutants lacking the MSD and CyD via phosphoglycolipid anchor nor domain swapping mutants, with the MSD or CyD of MuLV Env and VSV-G exchanged against the corresponding HFV domains, could restore particle envelopment and the release defect of pseudotypes. However, replacement of the HFV MSD with that of MuLV led to budding of HFV capsids at the intracellular membranes. These virions were of apparently wild-type morphology but were not naturally released into the supernatant and they were noninfectious.  (+info)

A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. (3/2088)

The matrix (M) protein of rhabdoviruses has been shown to play a key role in virus assembly and budding; however, the precise mechanism by which M mediates these processes remains unclear. We have associated a highly conserved, proline-rich motif (PPxY or PY motif, where P denotes proline, Y represents tyrosine, and x denotes any amino acid) of rhabdoviral M proteins with a possible role in budding mediated by the M protein. Point mutations that disrupt the PY motif of the M protein of vesicular stomatitis virus (VSV) have no obvious effect on membrane localization of M but instead lead to a decrease in the amount of M protein released from cells in a functional budding assay. Interestingly, the PPxY sequence within rhabdoviral M proteins is identical to that of the ligand which interacts with WW domains of cellular proteins. Indeed, results from two in vitro binding assays demonstrate that amino acids 17 through 33 and 29 through 44, which contain the PY motifs of VSV and rabies virus M proteins, respectively, mediate interactions with WW domains of specific cellular proteins. Point mutations that disrupt the consensus PY motif of VSV or rabies virus M protein result in a significant decrease in their ability to interact with the WW domains. These properties of the PY motif of rhabdovirus M proteins are strikingly analogous to those of the late (L) budding domain identified in the gag-specific protein p2b of Rous sarcoma virus. Thus, it is possible that rhabdoviruses may usurp host proteins to facilitate the budding process and that late stages in the budding process of rhabdoviruses and retroviruses may have features in common.  (+info)

Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus-retrovirus chimeras. (4/2088)

Little is known about the mechanisms used by enveloped viruses to separate themselves from the cell surface at the final step of budding. However, small sequences in the Gag proteins of several retroviruses (L domains) have been implicated in this process. A sequence has been identified in the M proteins of rhabdoviruses that closely resembles the PPPPY motif in the L domain of Rous sarcoma virus (RSV), an avian retrovirus. To evaluate whether the PPPY sequence in vesicular stomatitis virus (VSV) M protein has an activity analogous to that of the retroviral sequence, M-Gag chimeras were characterized. The N-terminal 74 amino acids of the VSV (Indiana) M protein, including the PPPY motif, was able to replace the L domain of RSV Gag and allow the assembly and release of virus-like particles. Alanine substitutions in the VSV PPPY motif severely compromised the budding activity of this hybrid protein but not that of another chimera which also contained the RSV PPPPY sequence. We conclude that this VSV sequence is functionally homologous to the RSV L domain in promoting virus particle release, making this the first example of such an activity in a virus other than a retrovirus. Both the RSV and VSV motifs have been shown to interact in vitro with certain cellular proteins that contain a WW interaction module, suggesting that the L domains are sites of interaction with unknown host machinery involved in virus release.  (+info)

Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. (5/2088)

A cDNA encoding the human guanylate binding protein-1 (hGBP-1) was expressed in HeLa cells using a constitutive expression vector. Stably transfected clones expressing hGBP-1 exhibited resistance to the cytopathic effect mediated by both vesicular stomatitis virus (VSV) and encephalomyocarditis virus (EMCV) and produced less viral progeny than control cells following infection with these viruses. To study the role hGBP-1 plays in the IFN-mediated antiviral effect, cells were stably transfected with a construct expressing antisense RNA for hGBP-1. VSV infection of IFN-alpha-treated antisense RNA-expressing cells produced an amount of virus comparable to that produced in the parental cell line, while EMCV infection of the IFN-alpha-treated transfected cells and VSV and EMCV infection of the IFN-gamma-treated transfected cells produced far more virus than was produced in the parental cell line. These results demonstrate that GBP-1 mediates an antiviral effect against VSV and EMCV and plays a role in the IFN-mediated antiviral response against these viruses.  (+info)

Effects of double-site mutations of vesicular stomatitis virus glycoprotein G on membrane fusion activity. (6/2088)

Site-directed mutagenesis of specific amino acids within a conserved amino-terminal region (H2) and a conserved carboxyl-terminal region (H10/A4) of the fusion protein G of vesicular stomatitis virus have previously identified these two segments as an internal fusion peptide and a region influencing low-pH induced conformational change, respectively. Here, we combined a number of the substitution mutants in the H2 and H10/A4 regions to produce a series of double-site mutants and determined the effect of these mutations on membrane fusion activity at acid pH and on pH-dependent conformational change. The results show that most of the double-site mutants have decreased cell-cell fusion activity and that the effects appeared to be additive in terms of inhibition of fusion, except for one mutant, which appeared to be a revertant. The double-site mutants also had pH optima for fusion that were lower than those observed with wild-type G but same as the pH optima for the parent fusion peptide (H2) mutants. The results suggest that although the H2 and H10/A4 sites may affect membrane fusion independently, a possible interaction between these two sites cannot be ruled out.  (+info)

One-day ex vivo culture allows effective gene transfer into human nonobese diabetic/severe combined immune-deficient repopulating cells using high-titer vesicular stomatitis virus G protein pseudotyped retrovirus. (7/2088)

Retrovirus-mediated gene transfer into long-lived human pluripotent hematopoietic stem cells (HSCs) is a widely sought but elusive goal. A major problem is the quiescent nature of most HSCs, with the perceived requirement for ex vivo prestimulation in cytokines to induce stem cell cycling and allow stable gene integration. However, ex vivo culture may impair stem cell function, and could explain the disappointing clinical results in many current gene transfer trials. To address this possibility, we examined the ex vivo survival of nonobese diabetic/severe combined immune-deficient (NOD/SCID) repopulating cells (SRCs) over 3 days. After 1 day of culture, the SRC number and proliferation declined twofold, and was further reduced by day 3; self-renewal was only detectable in noncultured cells. To determine if the period of ex vivo culture could be shortened, we used a vesicular stomatitis virus G protein (VSV-G) pseudotyped retrovirus vector that was concentrated to high titer. The results showed that gene transfer rates were similar without or with 48 hours prestimulation. Thus, the use of high-titer VSV-G pseudotyped retrovirus may minimize the loss of HSCs during culture, because efficient gene transfer can be obtained without the need for extended ex vivo culture.  (+info)

Gene transfer to human pancreatic endocrine cells using viral vectors. (8/2088)

We have studied the factors that influence the efficiency of infection of human fetal and adult pancreatic endocrine cells with adenovirus, murine retrovirus, and lentivirus vectors all expressing the green fluorescent protein (Ad-GFP, MLV-GFP, and Lenti-GFP, respectively). Adenoviral but not retroviral vectors efficiently infected intact pancreatic islets and fetal islet-like cell clusters (ICCs) in suspension. When islets and ICCs were plated in monolayer culture, infection efficiency with all three viral vectors increased. Ad-GFP infected 90-95% of the cells, whereas infection with MLV-GFP and Lenti-GFP increased only slightly. Both exposure to hepatocyte growth factor/scatter factor (HGF/SF) and dispersion of the cells by removal from the culture dish and replating had substantial positive effects on the efficiency of infection with retroviral vectors. Studies of virus entry and cell replication revealed that cell dispersion and stimulation by HGF/SF may be acting through both mechanisms to increase the efficiency of retrovirus-mediated gene transfer. Although HGF/SF and cell dispersion increased the efficiency of infection with MLV-GFP, only rare cells with weak staining for insulin were infected, whereas approximately 25% of beta-cells were infected with Lenti-GFP. We conclude that adenovirus is the most potent vector for ex vivo overexpression of foreign genes in adult endocrine pancreatic cells and is the best vector for applications where high-level but transient expression is desired. Under the optimal conditions of cell dispersion plus HGF/SF, infection with MLV and lentiviral vectors is reasonably efficient and stable, but only lentiviral vectors efficiently infect pancreatic beta-cells.  (+info)