Reproducibility studies with 11C-DTBZ, a monoamine vesicular transporter inhibitor in healthy human subjects. (1/128)

The reproducibility of (+/-)-alpha-[11C] dihydrotetrabenazine (DTBZ) measures in PET was studied in 10 healthy human subjects, aged 22-76 y. METHODS: The scan-to-scan variation of several measures used in PET data analysis was determined, including the radioactivity ratio (target-to-reference), plasma-input Logan total distribution volume (DV), plasma-input Logan Bmax/Kd and tissue-input Logan Bmax/Kd values. RESULTS: The radioactivity ratios, plasma-input Bmax/Kd and tissue-input Bmax/Kd all have higher reliability than plasma-input total DV values. In addition, measures using the occipital cortex as the reference region have higher reliability than the same measures using the cerebellum as the reference region. CONCLUSION: Our results show that DTBZ is a reliable PET tracer that provides reproducible in vivo measurement of striatal vesicular monoamine transporter density. In the selection of reference regions for DTBZ PET data analysis, caution must be exercised in circumstances when DTBZ binding in the occipital cortex or the cerebellum may be altered.  (+info)

Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. (2/128)

Methamphetamine (METH) is a powerful psychostimulant that is increasingly abused worldwide. Although it is commonly accepted that the dopaminergic system and oxidation of dopamine (DA) play pivotal roles in the neurotoxicity produced by this phenylethylamine, the primary source of DA responsible for this effect has remained elusive. In this study, we used mice heterozygous for vesicular monoamine transporter 2 (VMAT2 +/- mice) to determine whether impaired vesicular function alters the effects of METH. METH-induced dopaminergic neurotoxicity was increased in striatum of VMAT2 +/- mice compared with wild-type mice as revealed by a more consistent DA and metabolite depletion and a greater decrease in dopamine transporter expression. Interestingly, increased METH neurotoxicity in VMAT2 +/- mice was accompanied by less pronounced increase in extracellular DA and indices of free radical formation compared with wild-type mice. These results indicate that disruption of vesicular monoamine transport potentiates METH-induced neurotoxicity in vivo and point, albeit indirectly, to a greater contribution of intraneuronal DA redistribution rather than extraneuronal overflow on mediating this effect.  (+info)

Vesicular monoamine transporter-2 and aromatic L-amino acid decarboxylase enhance dopamine delivery after L-3, 4-dihydroxyphenylalanine administration in Parkinsonian rats. (3/128)

Medical therapy in Parkinson's disease (PD) is limited by the short-duration response and development of dyskinesia that result from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) therapy. These problems occur partly because the loss of dopamine storage sites leads to erratic dopamine delivery. Vesicular monoamine transporter-2 (VMAT-2) plays a critical role in dopamine storage by packaging dopamine into synaptic vesicles and regulating sustained release of dopamine. To restore the capacity to produce and store dopamine in parkinsonian rats, primary skin fibroblast cells (PF) were genetically modified with aromatic L-amino acid decarboxylase (AADC) and VMAT-2 genes. After incubation with L-DOPA in culture, the doubly transduced fibroblast cells (PFVMAA) produced and stored dopamine at a much higher level than the cells with either gene alone. PFVMAA cells in culture released dopamine gradually in a constitutive manner. Genetically modified fibroblast cells were grafted in parkinsonian rat striata, and L-DOPA was systemically administered. Higher dopamine levels were sustained for a longer duration in rats grafted with PFVMAA cells than in those grafted with either control cells or cells with AADC alone. These findings underscore the importance of dopamine storage capacity in determining the efficacy of L-DOPA therapy and illustrate a novel method of gene therapy combined with precursor administration to overcome the major obstacles of PD treatment.  (+info)

Modulation of gastrin processing by vesicular monoamine transporter type 1 (VMAT1) in rat gastrin cells. (4/128)

1. Gastrointestinal endocrine cells produce biogenic amines which are transported into secretory vesicles by one of two proton-amine exchangers, vesicular monoamine transporters type 1 and 2 (VMAT1 and 2). We report here the presence of VMAT1 in rat gastrin (G) cells and the relevance of VMAT1 function for the modulation of progastrin processing by biogenic and dietary amines. 2. In immunocytochemical studies VMAT1, but not VMAT2, was localized to subpopulations of G cells and enterochromaffin (EC) cells; neither was found in antral D cells. The expression of VMAT1 in antral mucosa was confirmed by Northern blot analysis, which revealed an mRNA band of approximately 3.2 kb, and by Western blot analysis, which revealed a major protein of 55 kDa. 3. In pulse-chase labelling experiments, the conversion of the amidated gastrin G34 to G17 was inhibited by biogenic amine precursors (L-DOPA and 5-hydroxytryptophan). This inhibition was stereospecific and sensitive to reserpine (50 nM), which blocks VMAT1 and VMAT2, but resistant to tetrabenazine, which is a selective inhibitor of VMAT2. 4. Dietary amines such as tyramine and tryptamine also inhibited G34 cleavage. This effect was associated with a loss of the electron-dense core of G cell secretory vesicles. It was not stereospecific or reserpine sensitive, but was correlated with hydrophobicity. 5. Thus rat antral G cells can express VMAT1; transport of biogenic amines into secretory vesicles by VMAT1 is associated with inhibition of G34 cleavage, perhaps by raising intravesicular pH. Dietary amines also modulate cleavage of progastrin-derived peptides, but do so by a VMAT1-independent mechanism; they may act as weak bases that passively permeate secretory vesicle membranes and raise intravesicular pH.  (+info)

Selective substrates for non-neuronal monoamine transporters. (5/128)

The recently identified transport proteins organic cation transporter 1 (OCT1), OCT2, and extraneuronal monoamine transporter (EMT) accept dopamine, noradrenaline, adrenaline, and 5-hydroxytryptamine as substrates and hence qualify as non-neuronal monoamine transporters. In the present study, selective transport substrates were identified that allow, by analogy to receptor agonists, functional discrimination of these transporters. To contrast efficiency of solute transport, stably transfected 293 cell lines, each expressing a single transporter, were examined side by side in uptake experiments with radiolabeled substrates. Normalized uptake rates indicate that tetraethylammonium, with a rate of about 0.5 relative to 1-methyl-4-phenylpyridinium (MPP+), is a good substrate for OCT1 and OCT2. It was not, however, accepted as substrate by EMT. Choline was transported exclusively by OCT1, with a rate of about 0.5 relative to MPP+. Histamine was a good substrate with a rate of about 0.6 relative to MPP+ for OCT2 and EMT, but was not transported by OCT1. Guanidine was an excellent substrate for OCT2, with a rate as high as that of MPP+. Transport of guanidine by OCT1 was low, and transport by EMT was negligible. With the guanidine derivatives cimetidine and creatinine, a pattern strikingly similar to guanidine was observed. Collectively, these substrates reveal key differences in solute recognition and turnover and thus challenge the concept of "polyspecific" organic cation transporters. In addition, our data, when compared with previous studies, suggest that OCT2 corresponds to the organic cation/H+ antiport mechanism in renal brush-border membrane vesicles, and that EMT corresponds to the guanidine/H+ antiport mechanism in membrane vesicles from placenta and intestine.  (+info)

Ontogeny of ECL cells in the rat. (6/128)

ECL cells produce histamine and chromogranin A, and are restricted to the oxyntic mucosa of the stomach. ECL cell ontogeny has been studied in some detail in the rat. Using histidine decarboxylase immunostaining, the first ECL cells can be demonstrated at embryonic day 17. Immunoreactive histamine and chromogranin A appear one day later. At embryonic day 20, the vesicular monoamine transporter type 2 is also present in the ECL cells. Neonatally the ECL cell proliferation is slow; however, one to three weeks postnatally there is a rapid growth of ECL cells to populate the basal half of the glands. Gastrin is known to be an important stimulator of ECL cell activity and growth in the adult rat. As revealed in recent mouse gene knock out models gastrin does not seem to play a role in the early ECL cell differentiation and development.  (+info)

Assessment of extrastriatal vesicular monoamine transporter binding site density using stereoisomers of [11C]dihydrotetrabenazine. (7/128)

Previous studies have demonstrated the utility of [11C]dihydrotetrabenazine ([11C]DTBZ) as a ligand for in vivo imaging of the vesicular monoamine transporter system. The (+)-isomer has a high affinity (approximately 1 nmol/L) for the vesicular monoamine transporter (VMAT2) binding site, whereas the (-)-isomer has an extremely low affinity (approximately 2 micromol/L). Efforts to model dynamic (+)-[11C]DTBZ data demonstrate the difficulty in separating the specific binding component from the free plus nonspecific component of the total positron emission tomography (PET) measure. The authors' previous PET work, as well as in vitro studies, indicate that there is little specific VMAT2 binding in neocortical regions. However, precise determination of in vivo binding levels have not been made, leaving important questions unanswered. At one extreme, is there sufficient specific binding in cortex or other extrastriate regions to be estimated reliably with PET? At the other extreme, is there sufficiently little binding in cortex so that it can be used as a reference region representing nonsaturable tracer uptake? The authors address these questions using paired studies with both active (+) and inactive (-) stereoisomers of [11C]DTBZ. Six normal control subjects were scanned twice, 2 hours apart, after injections of 16 mCi of (+)- and (-)-[11C]DTBZ (order counter-balanced). Three-dimensional PET acquisition consisted of 15 frames over 60 minutes for each scan. Arterial samples were acquired throughout, plasma counted, and corrected for radiolabeled metabolites. Analysis of specific binding was assessed by comparison of total distribution volume measures from the (+)- and (-)-[11C]DTBZ scans. The authors' findings indicate that only approximately 5% of the cortical signal in (+)-[11C]DTBZ scans results from binding to VMAT2 sites. The strongest extrastriatal signal comes from the midbrain regions where approximately 30% of the PET measure results from specific binding. The authors conclude that (1) the density of VMAT2 binding sites in cortical regions is not high enough to be quantified reliably with DTBZ PET, and (2) binding does appear to be low enough so that cortex can be used as a free plus nonspecific reference region for striatum.  (+info)

Differential quantal release of histamine and 5-hydroxytryptamine from mast cells of vesicular monoamine transporter 2 knockout mice. (8/128)

The recent availability of mice lacking the neuronal form of the vesicular monoamine transporter 2 (VMAT2) affords the opportunity to study its roles in storage and release. Carbon fiber microelectrodes were used to measure individual secretory events of histamine and 5-hydroxytryptamine (5-HT) from VMAT2-expressing mast cells as a model system for quantal release. VMAT2 is indispensable for monoamine storage because mast cells from homozygous (VMAT2(-/-)) mice, while undergoing granule-cell fusion, do not release monoamines. Cells from heterozygous animals (VMAT2(+/-)) secrete lower amounts of monoamine per granule than cells from wild-type controls. Investigation of corelease of histamine and 5-HT from granules in VMAT2(+/-) cells revealed 5-HT quantal size was reduced more than that of histamine. Thus, although vesicular transport is the limiting factor determining quantal size of 5-HT and histamine release, intragranular association with the heparin matrix also plays a significant role.  (+info)