Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. (9/5424)

The green fluorescent protein (GFP) has proven to be an excellent fluorescent marker for protein expression and localisation in living cells [1] [2] [3] [4] [5]. Several mutant GFPs with distinct fluorescence excitation and emission spectra have been engineered for intended use in multi-labelling experiments [6] [7] [8] [9]. Discrimination of these co-expressed GFP variants by wavelength is hampered, however, by a high degree of spectral overlap, low quantum efficiencies and extinction coefficients [10], or rapid photobleaching [6]. Using fluorescence lifetime imaging microscopy (FLIM) [11] [12] [13] [14] [15] [16], four GFP variants were shown to have distinguishable fluorescence lifetimes. Among these was a new variant (YFP5) with spectral characteristics reminiscent of yellow fluorescent protein [8] and a comparatively long fluorescence lifetime. The fluorescence intensities of co-expressed spectrally similar GFP variants (either alone or as fusion proteins) were separated using lifetime images obtained with FLIM at a single excitation wavelength and using a single broad band emission filter. Fluorescence lifetime imaging opens up an additional spectroscopic dimension to wavelength through which novel GFP variants can be selected to extend the number of protein processes that can be imaged simultaneously in cells.  (+info)

Strain variation in glycosaminoglycan recognition influences cell-type-specific binding by lyme disease spirochetes. (10/5424)

Lyme disease, a chronic multisystemic disorder that can affect the skin, heart, joints, and nervous system is caused by Borrelia burgdorferi sensu lato. Lyme disease spirochetes were previously shown to bind glycosaminoglycans (GAGs). In the current study, the GAG-binding properties of eight Lyme disease strains were determined. Binding by two high-passage HB19 derivatives to Vero cells could not be inhibited by enzymatic removal of GAGs or by the addition of exogenous GAG. The other six strains, which included a different high-passage HB19 derivative (HB19 clone 1), were shown to recognize both heparan sulfate and dermatan sulfate in cell-binding assays, but the relative efficiency of binding to these two GAGs varied among the strains. Strains N40, CA20-2A, and PBi bound predominantly to heparan sulfate, PBo bound both heparan sulfate and dermatan sulfate roughly equally, and VS461 and HB19 clone 1 recognized primarily dermatan sulfate. Cell binding by strain HB19 clone 1 was inhibited better by exogenous dermatan sulfate than by heparin, whereas heparin was the better inhibitor of binding by strain N40. The GAG-binding preference of a Lyme disease strain was reflected in its cell-type-specific binding. Strains that recognized predominantly heparan sulfate bound efficiently to both C6 glioma cells and EA-Hy926 cells, whereas strains that recognized predominantly dermatan sulfate bound well only to the glial cells. The effect of lyase treatment of these cells on bacterial binding was consistent with the model that cell-type-specific binding was a reflection of the GAG-binding preference. We conclude that the GAG-binding preference varies with the strain of Lyme disease spirochete and that this variation influences cell-type-specific binding in vitro.  (+info)

Crystal structure of the B subunit of Escherichia coli heat-labile enterotoxin carrying peptides with anti-herpes simplex virus type 1 activity. (11/5424)

Two chimeric proteins, consisting of the B subunit of Escherichia coli heat-labile enterotoxin with different peptides fused to the COOH-terminal ends, have been crystallized and their three-dimensional structure determined. The two extensions correspond to (a) a nonapeptide representing the COOH-terminal sequence of the small subunit of herpes simplex virus type 1 ribonucleotide reductase and (b) a 27-amino acid long peptide, corresponding to the COOH-terminal end of the catalytic subunit (POL) of DNA polymerase from the same virus. Both proteins crystallize in the P41212 space group with one pentameric molecule per asymmetric unit, corresponding to a solvent content of about 75%. The overall conformation of the B subunit pentamer in the two chimeric proteins, which consists of five identical polypeptide chains, is very similar to that in the native AB complex and conforms strictly to 5-fold symmetry. On the contrary, the peptide extensions are essentially disordered: in the case of the nonapeptide, only 5 and 6 amino acids were, respectively, positioned in two monomers, while in the other three only 2 residues are ordered. The extension is fully confined to the surface of the pentamer opposite to the face that interacts with the membrane and consequently it does not interfere with the ability of the B subunit to interact with membrane receptors. Moreover, the conformational flexibility of the two peptide extensions could be correlated to their propensity for proteolytic processing and consequent release of a biologically active molecule into cultured cells.  (+info)

The host-cell architectural protein HMG I(Y) modulates binding of herpes simplex virus type 1 ICP4 to its cognate promoter. (12/5424)

The productive infection cycle of herpes simplex virus is controlled in part by the action of ICP4, an immediate-early gene product that acts as both an activator and repressor of transcription. ICP4 is autoregulatory, and IE-3, the gene that encodes it, contains a high-affinity binding site for the protein at its cap site. Previously, we had demonstrated that this site could be occupied by proteins found in nuclear extracts from uninfected cells. A HeLa cell cDNA expression library was screened with a DNA probe containing the IE-3 gene cap site, and clones expressing the architectural chromatin proteins HMG I and HMG Y were identified by this technique. HMG I is shown to augment binding of ICP4 to its cognate site in in vitro assays and to enhance the activity of this protein in short-term transient expression assays.  (+info)

Dynamin II is involved in endocytosis but not in the formation of transport vesicles from the trans-Golgi network. (13/5424)

Dynamins are a family of approximately 100-kDa GTPases that are thought to play a pivotal role in the formation of endocytic coated vesicles. There are three dynamin genes in mammals: dynamin I is neuron-specific, dynamin II shows ubiquitous expression, and dynamin III is expressed in testis, brain, and lung. However, most studies on the functions of dynamins to date have been restricted to dynamin I. In the present study, we show that, like dynamin I, dynamin II is involved in receptor-mediated endocytosis. While this study was in progress, Jones et al. [Jones, S.M., Howell, K.E., Henley, J.R., Cao, H., and McNiven, M.A. (1998) Science 279, 573-577] reported that dynamin II is localized in the trans-Golgi network (TGN) and involved in the formation of constitutive transport vesicles and clathrin-coated vesicles from this compartment. However, immunofluorescence analyses and experiments using cells transfected with dominant-negative dynamin II failed to show any evidence for localization of dynamin II in the TGN or for its involvement in vesicle formation from this compartment. Our data thus indicate that dynamin II is involved in endocytosis but not in the formation of transport vesicles from the TGN.  (+info)

Herpes simplex virus entry is associated with tyrosine phosphorylation of cellular proteins. (14/5424)

The initial step in herpes simplex virus (HSV) entry is binding of virion glycoprotein (g)C and/or gB to cell surface heparan sulfate. After this initial attachment, gD interacts with cell surface receptor or receptors, and the virion envelope fuses with the cell membrane. Fusion requires viral glycoproteins gB, gD, gL, and gH, but the cellular factors that participate in or the pathways activated by viral entry have not been defined. To determine whether signal transduction pathways are triggered by viral-cell fusion, we examined the association of viral entry with tyrosine phosphorylation of cellular proteins. Using immunoprecipitation and Western blotting, we found that at least three cytoplasmic host cell proteins, designated p80, p104, and p140, become tyrosine phosphorylated within 5-10 min after exposure to HSV-1 or HSV-2. However, no phosphorylation is detected when cells are exposed to a mutant virus deleted in gL that binds but fails to penetrate. Phosphorylation is restored when the gL-deletion virus is grown on a complementing cell line. Viral entry and the phosphorylation of p80, p104, and p140 are inhibited when cells are infected with virus in the presence of protein tyrosine kinase inhibitors. Taken together, these studies suggest that tyrosine phosphorylation of host cellular proteins is triggered by viral entry.  (+info)

Experimental gene therapy against subcutaneously implanted glioma with a herpes simplex virus-defective vector expressing interferon-gamma. (15/5424)

We investigated the feasibility of local treatment or tumor vaccination with a herpes simplex virus (HSV) type 1-defective vector. The vector was engineered to express murine interferon-gamma (IFN-gamma) for experimental gene therapy against mouse glioma Rous sarcoma virus (RSV). The murine IFN-gamma gene was driven by the cytomegalovirus promoter. The helper virus (tsk) was thermosensitive; consequently, this vector could only proliferate at 31 degrees C. A high level of murine IFN-gamma expression was confirmed in vitro and in vivo by immunohistochemistry using anti-mouse IFN-gamma monoclonal antibody. This engineered vector (dvHSV/MulFN-gamma) inhibited the proliferation of mouse glioma RSV cells in vitro, and an intratumoral (i.t.) local injection of the vector caused i.t. necrosis in vivo. The immunological effect of dvHSV/MulFN-gamma was also examined in a mouse glioma RSV cell implantation model. A subcutaneous (s.c.) implant of 1 x 10(6) mouse glioma RSV cells after treatment with dvHSV/MulFN-gamma was rejected. However, the implant after treatment with an engineered HSV-defective vector containing an antisense nucleotide sequence of the murine IFN-gamma gene was not rejected. In addition, in another group of mice in which RSV cells treated with dvHSV/MulFN-gamma were implanted into a femoral (s.c.) region and nontreated RSV cells were implanted into a contralateral femoral (s.c.) region, the implanted RSV cells were rejected. The rejection of the implanted mouse glioma RSV was blocked by anti-asialo GM1, which was known to inhibit natural killer cell activity. These results revealed that the HSV-defective vector could realize a high efficiency of transfection to glioma cells through short-time treatment, and that the IFN-gamma gene transferred to the cells had the effect of tumor vaccination, which was suggested be related to natural killer cells. In conclusion, dvHSV/MulFN-gamma may be useful for the gene therapy of malignant glioma through either i.t. local injection or a practical tumor vaccination with ex vivo gene transfer.  (+info)

Enhanced measles virus cDNA rescue and gene expression after heat shock. (16/5424)

Rescue of negative-stranded RNA viruses from full-length genomic cDNA clones is an essential technology for genetic analysis of this class of viruses. Using this technology in our studies of measles virus (MV), we found that the efficiency of the measles virus rescue procedure (F. Radecke et al., EMBO J. 14:5773-5784, 1995) could be improved by modifying the procedure in two ways. First, we found that coculture of transfected 293-3-46 cells with a monolayer of Vero cells increased the number of virus-producing cultures about 20-fold. Second, we determined that heat shock treatment increased the average number of transfected cultures that produced virus another two- to threefold. In addition, heat shock increased the number of plaques produced by positive cultures. The effect of heat shock on rescue led us to test the effect on transient expression from an MV minireplicon. Heat shock increased the level of reporter gene expression when either minireplicon DNA or RNA was used regardless of whether complementation was provided by cotransfection with expression plasmids or infection with MV helper virus. In addition, we found that MV minireplicon gene expression could be stimulated by cotransfection with an Hsp72 expression plasmid, indicating that hsp72 likely plays a role in the effect of heat shock.  (+info)