Time-resolved analysis and visualization of dynamic processes in living cells. (65/5424)

Recent development of in vivo microscopy techniques, including green fluorescent proteins, has allowed the visualization of a wide range of dynamic processes in living cells. For quantitative and visual interpretation of such processes, new concepts for time-resolved image analysis and continuous time-space visualization are required. Here, we describe a versatile and fully automated approach consisting of four techniques, namely highly sensitive object detection, fuzzy logic-based dynamic object tracking, computer graphical visualization, and measurement in time-space. Systematic model simulations were performed to evaluate the reliability of the automated object detection and tracking method. To demonstrate potential applications, the method was applied to the analysis of secretory membrane traffic and the functional dynamics of nuclear compartments enriched in pre-mRNA splicing factors.  (+info)

A single amino acid substitution in the cyclin D binding domain of the infected cell protein no. 0 abrogates the neuroinvasiveness of herpes simplex virus without affecting its ability to replicate. (66/5424)

The infected cell protein no. 0 (ICP0) of herpes simplex virus 1 is a promiscuous transactivator shown to enhance the expression of genes introduced into cells by infection or transfection. The protein interacts with several viral and cellular proteins. Earlier studies have shown that ICP0 binds and stabilizes cyclin D3 but does interfere with the phosphorylation of retinoblastoma protein, its major function. Cyclin D3 plays a key role in the transition from G1 to S phase. To define the role of cyclin D3 in productive infection, the ICP0 binding site for cyclin D3 was mapped and mutagenized by substitution of aspartic acid codon 199 with the alanine codon. We report that the substitution precluded the interaction of this protein with cyclin D3 in the yeast two-hybrid system and the stabilization of cyclin D3 in infected cells. A recombinant virus carrying this mutation could not be differentiated from wild-type parent with respect to replication in dividing cells but yielded 10-fold less progeny from infected resting cells and serum-deprived or contact-inhibited human fibroblasts. In mice, the mutant was only slightly less pathogenic than the wild-type parent by intracerebral route but was significantly less neuroinvasive after peripheral inoculation. Replacement of the mutated amino acid with aspartic acid restored wild-type phenotype. Stabilization of cyclin D3 therefore is linked to higher virus yields in nondividing cells and potentially higher virulence in experimental and natural hosts. One function of ICP0 is to scavenge the cell for proteins that could bolster viral replication.  (+info)

The mumps virus neurovirulence safety test in Rhesus monkeys: a comparison of mumps virus strains. (67/5424)

Wild type mumps viruses are highly neurotropic and a frequent cause of aseptic meningitis in unvaccinated humans. To test whether attenuated mumps viruses used in the manufacture of mumps vaccines have neurovirulent properties, a monkey neurovirulence safety test (MNVT) is performed. However, results with several mumps virus MNVTs have raised questions as to whether the test can reliably discriminate neurovirulent from nonneurovirulent mumps virus strains. Here, various mumps virus strains representing a wide range of neuropathogenicity were tested in a standardized MNVT. A trend of higher neurovirulence scores was observed in monkeys inoculated with wild type mumps virus versus vaccine strains, although differences were not statistically significant. Results indicated the need for further examination and refinement of the MNVT or for development of alternative MNVTs.  (+info)

p125 is a novel mammalian Sec23p-interacting protein with structural similarity to phospholipid-modifying proteins. (68/5424)

COPII-coated vesicles are involved in protein transport from the endoplasmic reticulum to the Golgi apparatus. COPII consists of three parts: Sar1p and the two protein complexes, Sec23p-Sec24p and Sec13p-Sec31p. Using a glutathione S-transferase fusion protein with mouse Sec23p, we identified a novel mammalian Sec23p-interacting protein, p125, which is clearly distinct from Sec24p. The N-terminal region of p125 is rich in proline residues, and the central and C-terminal regions exhibit significant homology to phospholipid-modifying proteins, especially phosphatidic acid preferring-phospholipase A1. We transiently expressed p125 and mouse Sec23p in mammalian cells and examined their interaction. The results showed that the N-terminal region of p125 is important for the interaction with Sec23p. We confirmed the interaction between the two proteins by a yeast two-hybrid assay. Overexpression of p125, like that of mammalian Sec23p, caused disorganization of the endoplasmic reticulum-Golgi intermediate compartment and Golgi apparatus, suggesting its role in the early secretory pathway.  (+info)

Dissection of individual functions of the Sendai virus phosphoprotein in transcription. (69/5424)

The Sendai virus P protein is an essential component of the viral RNA polymerase (P-L complex) required for RNA synthesis. To identify amino acids important for P-L binding, site-directed mutagenesis of the P gene changed 17 charged amino acids, singly or in groups, and two serines to alanine within the L binding domain from amino acids 408 to 479. Each of the 10 mutants was wild type for P-L and P-P protein interactions and for binding of the P-L complex to the nucleocapsid template, yet six showed a significant inhibition of in vitro mRNA and leader RNA synthesis. To determine if binding was instead hydrophobic in nature, five conserved hydrophobic amino acids in this region were also mutated. Each of these P mutants also retained the ability to bind to L, to itself, and to the template, but two gave a severe decrease in mRNA and leader RNA synthesis. Since all of the mutants still bound L, the data suggest that L binding occurs on a surface of P with a complex tertiary structure. Wild-type biological activity could be restored for defective polymerase complexes containing two P mutants by the addition of wild-type P protein alone, while the activity of two others could not be rescued. Gradient sedimentation analyses showed that rescue was not due to exchange of the wild-type and mutant P proteins within the P-L complex. Mutants which gave a defective RNA synthesis phenotype and could not be rescued by P establish an as-yet-unknown role for P within the polymerase complex, while the mutants which could be rescued define regions required for a P protein function independent of polymerase function.  (+info)

Cell surface expression of H2 antigens on primary sensory neurons in response to acute but not latent herpes simplex virus infection in vivo. (70/5424)

CD8(+) T lymphocytes and class I major histocompatibility complex (MHC-I) molecules profoundly influence the severity of neuronal herpes simplex virus (HSV) infection in experimentally infected mice. Paradoxically, neurons are classically regarded as MHC-I deficient. However, it is shown here that H2-encoded heavy chains (alphaCs) and their associated light chain, beta2 microglobulin, are present on the surfaces of primary sensory neurons recovered from sensory ganglia within 1 to 2 weeks of HSV infection. During this time, some neurons are found to be tightly associated with T cells in vivo. Prior data showed that termination of productive HSV infection in the peripheral nervous system is not dependent on cell-mediated lysis of infected neurons. Consistent with these data, immunogold electron microscopy showed that the density of cell surface H2 on neurons is an order of magnitude lower than on satellite glia, which is predicted to favor a noncytolytic CD8 cell response.  (+info)

Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. (71/5424)

Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in infants and young children worldwide. Infection is mediated, in part, by an initial interaction between attachment protein (G) and a highly sulfated heparin-like glycosaminoglycan (Gag) located on the cell surface. Synthetic overlapping peptides derived from consensus sequences of the G protein ectodomain from both RSV subgroups A and B were tested by heparin-agarose affinity chromatography for their abilities to bind heparin. This evaluation identified a single linear heparin binding domain (HBD) for RSV subgroup A (184A-->T198) and B (183K-->K197). The binding of these peptides to Vero cells was inhibited by heparin. Peptide binding to two CHO cell mutants (pgsD-677 and pgsA-745) deficient in heparan sulfate or total Gag synthesis was decreased 50% versus the parental cell line, CHO-K1, and decreased an average of 87% in the presence of heparin. The RSV-G HBD peptides were also able to inhibit homologous and heterologous virus infectivity of Vero cells. These results indicate that the sequence 184A/183K-->198T/K197 for RSV subgroups A and B, respectively, defines an important determinant of RSV-G interactions with heparin.  (+info)

Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection. (72/5424)

The UL49 gene product (VP22) of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is a virion phosphoprotein which accumulates inside infected cells at late stages of infection. We previously (J. A. Blaho, C. Mitchell, and B. Roizman, J. Biol. Chem. 269:17401-17410, 1994) discovered that the form of VP22 packaged into infectious virions differed from VP22 extracted from infected-cell nuclei in that the virion-associated form had a higher electrophoretic mobility in denaturing gels. Based on these results, we proposed that VP22 in virions was "undermodified" in some way. The goal of this study is to document the biological and biochemical properties of VP22 throughout the entire course of a productive HSV-1 infection. We now report the following. (i) VP22 found in infected cells is distributed in at least three distinct subcellular localizations, which we define as cytoplasmic, diffuse, and nuclear, as measured by indirect immunofluorescence. (ii) Using a synchronized infection system, we determined that VP22 exists predominantly in the cytoplasm early in infection and accumulates in the nucleus late in infection. (iii) While cytoplasmic VP22 colocalizes with the HSV-1 glycoprotein D early in infection, the nuclear form of VP22 is not restricted to replication compartments which accumulate ICP4. (iv) VP22 migrates as at least three unique electrophoretic species in denaturing sodium dodecyl sulfate-DATD-polyacrylamide gels. VP22a, VP22b, and VP22c have high, intermediate, and low mobility, respectively. (v) The relative distribution of the various forms of VP22 derived from infected whole-cell extracts varies during the course of infection such that low-mobility species predominate at early times and high-mobility forms accumulate later. (vi) The highest-mobility forms of VP22 partition with the cytoplasmic fraction of infected cells, while the lowest-mobility forms are associated with the nuclear fraction. (vii) Finally, full-length VP22 which partitions in the nucleus incorporates radiolabel from [32P]orthophosphate whereas cytoplasmic VP22 does not. Based on these results, we conclude that modification of VP22 coincides with its appearance in the nucleus during the course of productive HSV-1 infection.  (+info)