BIIR 561 CL: a novel combined antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and voltage-dependent sodium channels with anticonvulsive and neuroprotective properties. (1/342)

Antagonists of glutamate receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype, as well as of voltage-gated sodium channels, exhibit anticonvulsive and neuroprotective properties in vivo. One can postulate that a compound that combines both principles might be useful for the treatment of disorders of the central nervous system, like focal or global ischemia. Here, we present data on the effects of dimethyl-(2-[2-(3-phenyl-[1,2, 4]oxadiazol-5-yl)-phenoxy]ethyl)-amine hydrochloride (BIIR 561 CL) on neuronal AMPA receptors and voltage-dependent sodium channels. BIIR 561 CL inhibited AMPA receptor-mediated membrane currents in cultured cortical neurons with an IC50 value of 8.5 microM. The inhibition was noncompetitive. In a cortical wedge preparation, BIIR 561 CL reduced AMPA-induced depolarizations with an IC50 value of 10.8 microM. In addition to the effects on the glutamatergic system, BIIR 561 CL inhibited binding of radiolabeled batrachotoxin to rat brain synaptosomal membranes with a Ki value of 1.2 microM. The compound reduced sodium currents in voltage-clamped cortical neurons with an IC50 value of 5.2 microM and inhibited the veratridine-induced release of glutamate from rat brain slices with an IC50 value of 2.3 microM. Thus, BIIR 561 CL inhibited AMPA receptors and voltage-gated sodium channels in a variety of preparations. BIIR 561 CL suppressed tonic seizures in a maximum electroshock model in mice with an ED50 value of 2.8 mg/kg after s.c. administration. In a model of focal ischemia in mice, i.p. administration of 6 or 60 mg/kg BIIR 561 CL reduced the area of the infarcted cortical surface. These data show that BIIR 561 CL is a combined antagonist of AMPA receptors and voltage-gated sodium channels with promising anticonvulsive and neuroprotective properties.  (+info)

Target-dependent regulation of acetylcholine secretion at developing motoneurons in Xenopus cell cultures. (2/342)

1. Myocyte-dependent regulation of acetylcholine (ACh) quantal secretion from developing motoneurons was studied in day-3 Xenopus nerve-muscle co-cultures. Spontaneous synaptic currents (SSCs) were measured in manipulated synapses by using whole-cell voltage-clamped myocytes. Changes in SSC amplitude were assumed to reflect changes in the ACh content of secreted quantal packets. Compared with natural synapses, motoneurons without any contact with a myocyte (naive neurons) released ACh in smaller quantal packets. 2. Bipolar cultured motoneurons, which were in contact with a myocyte with one axon branch (contact-end) but remained free at another axon branch (free-end), were further used to examine quantal ACh secretion. The ACh quantal size recorded at free-end terminals was similar to that of naive neurons and was smaller than that at the contact-end, indicating that myocyte contact exerts differential regulation on quantal secretion in the same neuron. 3. Some of the neurons that formed a natural synapse with a myocyte continued to grow forward and ACh quantal secretion from the free growth cone was examined. The ACh quantal size recorded at free growth cones was inversely proportional to the distance to the natural synapse, implying localized regulation of quantal secretion by the myocyte. 4. Chronic treatment of day-1 cultures with veratridine and d-tubocurarine, respectively, increased and decreased the neurotrophic action of myocytes when assayed on day 3. 5. Taken together, these findings suggest that the myocyte is an important postsynaptic target in the regulation of quantal secretion and that the trophic action is spatially restricted to the neighbourhood of the neuromuscular junction.  (+info)

Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells. (3/342)

Neural cell development is regulated by membrane ion channel activity. We have previously demonstrated that cell membrane depolarization with veratridine or blockage of K+ channels with tetraethylammonium (TEA) inhibit oligodendrocyte progenitor (OP) proliferation and differentiation (); however the molecular events involved are largely unknown. Here we show that forskolin (FSK) and its derivative dideoxyforskolin (DFSK) block K+ channels in OPs and inhibit cell proliferation. The antiproliferative effects of TEA, FSK, DFSK, and veratridine were attributable to OP cell cycle arrest in G1 phase. In fact, (1) cyclin D accumulation in synchronized OP cells was not affected by K+ channel blockers or veratridine; (2) these agents prevented OP cell proliferation only if present during G1 phase; and (3) G1 blockers, such as rapamycin and deferoxamine, mimicked the anti-proliferative effects of K+ channel blockers. DFSK also prevented OP differentiation, whereas FSK had no effect. Blockage of K+ channels and membrane depolarization also caused accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in OP cells. The antiproliferative effects of K+ channel blockers and veratridine were still present in OP cells isolated from INK4a-/- mice, lacking the cyclin-dependent kinase inhibitors p16(INK4a) and p19(ARF). Our results demonstrate that blockage of K+ channels and cell depolarization induce G1 arrest in the OP cell cycle through a mechanism that may involve p27(Kip1) and p21(CIP1) and further support the conclusion that OP cell cycle arrest and differentiation are two uncoupled events.  (+info)

The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum. (4/342)

1. The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to omega-conotoxin GVIA (omega-CTx-GVIA), omega-agatoxin IVA (omega-Aga-IVA) and omega-conotoxin MVIIC (omega-CTx-MVIIC), respectively. 2. KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 microM). It was significantly blocked by omega-CTx-GVIA (1 microM), omega-Aga-IVA (30 nM) and was confirmed to be abolished by omega-CTx-MVIIC (3 microM), indicating involvement of N-, P- and Q-type channel subtypes. 3. Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 microM) were fully additive to the effect of omega-CTx-GVIA (1 microM), whereas co-application with omega-Aga-IVA (30 nM) produced similar effects to those of omega-Aga-IVA alone. 4. As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 microM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 microM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 microM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved. 5. Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only.  (+info)

Propofol, bradycardia and the Bezold-Jarisch reflex in rabbits. (5/342)

Propofol may cause profound bradycardia and asystole, which are mediated indirectly via cardiac innervation but could involve direct effects on the sino-atrial (SA) node and the conducting system of the heart. To test the hypothesis that propofol may also activate Bezold-Jarisch reflexes to cause bradycardia, 5-hydroxytryptamine (5-HT), veratridine and propofol were injected into the left ventricle of the heart in both intact and vagotomized rabbits. 5-HT and veratridine produced an acute, rapid, dose-dependent decrease in mean heart rate (delta HR) and a decrease in mean arterial pressure (delta MAP) together with transient but severe depression and abolition of renal sympathetic nerve activity (RSNA). Bilateral vagotomy greatly attenuated these responses; for example, at the highest dose of 5-HT (8 micrograms kg-1), delta HR, delta MAP and duration of abolition of RSNA were reduced by 57% (P < 0.001), 53% (P < 0.05) and 79% (P < 0.05), respectively. In contrast, reductions in delta HR and delta MAP produced by propofol were statistically significant only at very high doses (8 mg kg-1). Propofol depressed but did not abolish RSNA, and bilateral vagotomy had no effect on any of these responses. These results indicate that the cause of acute bradycardia after administration of propofol does not involve the Bezold-Jarisch reflex.  (+info)

Calcium channels involved in K+- and veratridine-induced increase of cytosolic calcium concentration in human cerebral cortical synaptosomes. (6/342)

Human cerebral cortical synaptosomes were used to study voltage-dependent Ca(2+) channels mediating calcium influx in human axon terminals. Synaptosomes were depolarized by elevation of the extracellular K(+) concentration by 30 mM or by the addition of veratridine (10 microM). Increase in cytosolic concentration of calcium [Ca(2+)](i) induced by either stimulus was abolished in the absence of extracellular Ca(2+) ions. omega-Agatoxin IVA inhibited the K(+)-induced [Ca(2+)](i) increase concentration-dependently (IC(50): 113 nM). omega-Conotoxin GVIA (0.1 microM) inhibited K(+)-induced [Ca(2+)](i) increase by 20%. omega-Conotoxin MVIIC (0.2 microM) caused an inhibition by 85%. Nifedipine (1 microM) had no effect on K(+)-induced [Ca(2+)](i) increase. Veratridine-induced increase in [Ca(2+)](i) was inhibited by omega-conotoxin GVIA (0.1 microM) and omega-Agatoxin IVA (0.2 microM; by about 25 and 45%, respectively). Nifedipine inhibited the veratridine-evoked [Ca(2+)](i) increase concentration-dependently (IC(50): 4.9 nM); Bay K 8644 (3 microM) shifted the nifedipine concentration-response curve to the right. Mibefradil (10 microM) abolished the increase in [Ca(2+)](i) evoked by K(+) and reduced the increase evoked by veratridine by almost 90%. KB-R7943 (3 microM) an inhibitor of the Na(+)/Ca(2+) exchanger NCX1, decreased the increase in [Ca(2+)](i) evoked by veratridine by approximately 20%. It is concluded that the increase in [Ca(2+)](i) after K(+) depolarization caused by Ca(2+) influx predominantly via P/Q-type Ca(2+) channels and after veratridine depolarization via N- and P/Q-type, but also by L-type Ca(2+) channels. The toxin- and nifedipine-resistant fraction of the veratridine response may result both from influx via R-type Ca(2+) channels and by Ca(2+) inward transport via Na(+)/Ca(2+) exchanger.  (+info)

Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3-4) from the spider Phoneutria nigriventer. (7/342)

Glutamate concentration increases significantly in the extracellular compartment during brain ischaemia and anoxia. This increase has an important Ca(2+)-independent component, which is due in part to the reversal of glutamate transporters of the plasma membrane of neurons and glia. The toxin phoneutriatoxin 3-4 (Tx3-4) from the spider Phoneutria nigriventer has been reported to decrease the evoked glutamate release from synaptosomes by inhibiting Ca(2+) entry via voltage-dependent Ca(2+) channels. However, we report here that Tx3-4 is also able to inhibit the uptake of glutamate by synaptosomes in a time-dependent manner and that this inhibition in turn leads to a decrease in the Ca(2+)-independent release of glutamate. No other polypeptide toxin so far described has this effect. Our results suggest that Tx3-4 can be a valuable tool in the investigation of function and dysfunction of glutamatergic neurotransmission in diseases such as ischaemia.  (+info)

Cooperative activation of action potential Na+ ionophore by neurotoxins. (8/342)

Four neurotoxins that activate the action potential Na+ ionophore of electrically excitable neuroblastoma cells interact with two distinct classes of sites, one specific for the alkaloids veratridine, batrachotoxin, and aconitine, and the second specific for scorpion toxin. Positive heterotropic cooperativity is observed between toxins bound at these two classes of sites. Tetrodotoxin is a noncompetitive inhibitor of activation by each of these toxins (KI = 4-8 nM). These results suggest the existence of three functionally separable components of the action potential Na+ ionophore: two regulatroy components, which bind activating neurotoxins and interact allosterically in controlling the activity of a third ion-transport component, which binds tetrodotoxin.  (+info)