Climate change as a regulator of tectonics on Venus. (1/3)

Tectonics, volcanism, and climate on Venus may be strongly coupled. Large excursions in surface temperature predicted to follow a global or near-global volcanic event diffuse into the interior and introduce thermal stresses of a magnitude sufficient to influence widespread tectonic deformation. This sequence of events accounts for the timing and many of the characteristics of deformation in the ridged plains of Venus, the most widely preserved volcanic terrain on the planet.  (+info)

Discovery of the atomic oxygen green line in the Venus night airglow. (2/3)

Green line emission at 557.7 nanometers arising from the O(1S - 1D) transition of atomic oxygen has been observed on the nightside of Venus with HIRES, the echelle spectrograph on the W. M. Keck I 10-meter telescope. We also observe optical emissions of molecular oxygen, consistent with the spectra from the Venera orbiters, but our green line intensity is so high that we cannot explain how it could be inconspicuous in the Venera spectra. An upper limit for the intensity of the O(1D - 3P) oxygen red line at 630 nanometers has also been obtained. The large green/red ratio indicates that the source is not associated with the Venus ionosphere. An important conclusion is that observation of the green line in a planetary atmosphere is not an indicator of an atmosphere rich in molecular oxygen.  (+info)

The distance between Mars and Venus: measuring global sex differences in personality. (3/3)