Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting. (1/417)

This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters.  (+info)

Mathematical models for predicting indoor air quality from smoking activity. (2/417)

Much progress has been made over four decades in developing, testing, and evaluating the performance of mathematical models for predicting pollutant concentrations from smoking in indoor settings. Although largely overlooked by the regulatory community, these models provide regulators and risk assessors with practical tools for quantitatively estimating the exposure level that people receive indoors for a given level of smoking activity. This article reviews the development of the mass balance model and its application to predicting indoor pollutant concentrations from cigarette smoke and derives the time-averaged version of the model from the basic laws of conservation of mass. A simple table is provided of computed respirable particulate concentrations for any indoor location for which the active smoking count, volume, and concentration decay rate (deposition rate combined with air exchange rate) are known. Using the indoor ventilatory air exchange rate causes slightly higher indoor concentrations and therefore errs on the side of protecting health, since it excludes particle deposition effects, whereas using the observed particle decay rate gives a more accurate prediction of indoor concentrations. This table permits easy comparisons of indoor concentrations with air quality guidelines and indoor standards for different combinations of active smoking counts and air exchange rates. The published literature on mathematical models of environmental tobacco smoke also is reviewed and indicates that these models generally give good agreement between predicted concentrations and actual indoor measurements.  (+info)

Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. (3/417)

The present study investigated whether falls in environmental temperature increase morbidity from chronic obstructive pulmonary disease (COPD). Daily lung function and symptom data were collected over 12 months from 76 COPD patients living in East London and related to outdoor and bedroom temperature. Questionnaires were administered which asked primarily about the nature of night-time heating. A fall in outdoor or bedroom temperature was associated with increased frequency of exacerbation, and decline in lung function, irrespective of whether periods of exacerbation were excluded. Forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) fell markedly by a median of 45 mL (95% percentile range: -113-229 mL) and 74 mL (-454-991 mL), respectively, between the warmest and coolest week of the study. The questionnaire revealed that 10% had bedrooms <13 degrees C for 25% of the year, possibly because only 21% heated their bedrooms and 48% kept their windows open in November. Temperature-related reduction in lung function, and increase in exacerbations may contribute to the high level of cold-related morbidity from chronic obstructive pulmonary disease.  (+info)

A 15-week experimental exposure of pigs to airborne dust with added endotoxin in a continuous flow exposure chamber. (4/417)

The purpose of this study was to evaluate the effect of longterm exposure to airborne dust and endotoxin on the respiratory system of pigs. A continuous flow exposure chamber was built for the purpose of exposing pigs to selected airborne contaminants. Pigs (n = 6) were exposed to a combination of a very fine corn/soybean meal (40.6 mg/m3) with added lipopolysaccharide (LPS; 12.4 microg/m3) for 8 h/d over 5 d for 15 wk (75 d of exposure). Control pigs (n = 6) were housed in a room with minimal contamination of these airborne contaminants. Surprisingly, dust in the exposure chamber and the control room was highly contaminated with peptidoglycan. Changes in the lung were monitored by collecting bronchoalveolar lavage (BAL) fluid for cytology at 5 different time points throughout the exposure period. Blood samples were collected at the same time for hematology. A non-specific respiratory inflammatory response was found in exposed and control pigs, as suggested by the increased neutrophils in BAL fluid and the small inflammatory areas in the lung tissue. No macroscopic lung lesions were observed in control or exposed pigs. The findings in the control pigs imply that even low dust concentrations and possibly peptidoglycan contamination can induce cellular changes in the BAL fluid and that a true control pig does not exist. In addition, the exposed pigs developed a mild eosinophilia, indicating an allergic response to the airborne contaminants.  (+info)

Buildings operations and ETS exposure. (5/417)

Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations h implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS.  (+info)

Effects of aqueous extracts of PM(10) filters from the Utah valley on human airway epithelial cells. (6/417)

We hypothesized that the reduction in hospital respiratory admissions in the Utah Valley during closure of a local steel mill in 1986-1987 was attributable in part to decreased toxicity of ambient air particles. Sampling filters for particulate matter < 10 micrometer (PM(10)) were obtained from a Utah Valley monitoring station for the year before (year 1), during (year 2), and after (year 3) the steel mill closure. Aqueous extracts of the filters were analyzed for metal content and oxidant production and added to cultures of human respiratory epithelial (BEAS-2B) cells for 2 or 24 h. Year 2 dust contained the lowest concentrations of soluble iron, copper, and zinc and showed the least oxidant generation. Only dust from year 3 caused cytotoxicity (by microscopy and lactate dehydrogenase release) at 500 microgram/ml. Year 1 and year 3, but not year 2, dust induced expression of interleukin-6 and -8 in a dose-response fashion. The effects of ambient air particles on human respiratory epithelial cells vary significantly with time and metal concentrations.  (+info)

Airborne infection in a fully air-conditioned hospital. II. Transport of gaseous and airborne particulate material along ventilated passageways. (7/417)

A mathematical model is described for the transport of gaseous or airborne particulate material between rooms along ventilated passageways. Experimental observations in three hospitals lead to a value of about 0.06 m.2/sec. for the effective diffusion constant in air without any systematic directional flow. The 'constant' appears to increase if there is any directional flow along the passage, reaching about 0.12 m. 2/sec. at a flow velocity of 0.04 m./sec. Together with previously published methods the present formulae make it possible to calculate the expected average amounts of gaseous or particulate material that will be transported from room to room in ventilated buildings in which the ventilation and exchange airflows can be calculated. The actual amounts transported in occupied buildings, however, vary greatly from time to time.  (+info)

Office equipment and supplies: a modern occupational health concern? (8/417)

The Helsinki Office Environment Study, a population-based cross-sectional study was carried out in Finland in 1991 among 2,678 workers in 41 randomly selected office buildings. The aim was to evaluate the relations between work with office equipment and supplies and the occurrence of eye, nasopharyngeal, skin, and general symptoms (often denoted as sick building syndrome (SBS)), chronic respiratory symptoms, and respiratory infections. Work with self-copying paper was significantly related to weekly work-related eye, nasopharyngeal, and skin symptoms, headache and lethargy, as well as to the occurrence of wheezing, cough, mucus production, sinusitis, and acute bronchitis. Photocopying was related to nasal irritation, and video display terminal work to eye symptoms, headache, and lethargy.  (+info)