Regulation of Cl- secretion in seawater fish (Dicentrarchus labrax) gill respiratory cells in primary culture. (1/156)

1. Primary cultures of sea bass (Dicentrarchus labrax) gill cells grown on permeable membranes form a highly differentiated tight epithelium composed of respiratory-like cells. This preparation was also found to provide a functional model for investigating the hormonal regulation of Cl- secretion. 2. In control conditions, i.e. in the absence of hormones or other stimuli, the cultured epithelium showed a short-circuit current (Isc) of 8.8 +/- 0.4 microA cm-2, a transepithelial potential (Vt) of 28.6 +/- 0.6 mV (serosal side positive), and a transepithelial resistance (Rt) of 5026 +/- 127 Omega cm2. Addition of 50 nM PGE2 caused a stimulation of Isc, Vt and transepithelial conductance, Gt. The increase in Isc was probably due to the elevation in Cl- secretion, since it could be correlated with the stimulation of serosal to mucosal 36Cl- flux. Application of the neurohypophyseal peptide arginine vasotocin (AVT; 50 nM) or the beta-adrenergic agonist isoproterenol (isoprenaline; 0. 5 microM) evoked a stimulation in Cl- secretion, as was shown by the increases in Isc and Gt. The excitatory effect of isoproterenol followed by the inhibitory action of propranolol, a beta-adrenergic antagonist, suggested the presence of beta-adrenergic receptors. Noradrenaline (0.1 microM) elicited a reduction in Isc, Vt and Gt, which was counterbalanced by the addition of phentolamine, an alpha-adrenergic antagonist. This suggested an activation of alpha-adrenergic receptors. 3. This study provides evidence for hormonal control of the Cl- secretion in sea bass gill respiratory cells in culture, involving AVT, prostaglandin (PGE2), and beta- and alpha-adrenergic receptors.  (+info)

Sensitivity of bovine corpora lutea to prostaglandin F2alpha is dependent on progesterone, oxytocin, and prostaglandins. (2/156)

Prostaglandin (PG) F2alpha that is released from the uterus is essential for spontaneous luteolysis in cattle. Although PGF2alpha and its analogues are extensively used to synchronize the estrous cycle by inducing luteolysis, corpora lutea (CL) at the early stage of the estrous cycle are resistant to the luteolytic effect of PGF2alpha. We examined the sensitivity of bovine CL to PGF2alpha treatment in vitro and determined whether the changes in the response of CL to PGF2alpha are dependent on progesterone (P4), oxytocin (OT), and PGs produced locally. Bovine luteal cells from early (Days 4-5 of the estrous cycle) and mid-cycle CL (Days 8-12 of the estrous cycle) were preexposed for 12 h to a P4 antagonist (onapristone: OP; 10(-4) M), an OT antagonist (atosiban: AT; 10(-6) M), or indomethacin (INDO; 10(-4) M) before stimulation with PGF2alpha. Although OP reduced P4 secretion (p < 0.001) only in early CL, it reduced OT secretion in the cells of both phases examined (p < 0.001). OP also reduced PGF2alpha and PGE2 secretion (p < 0.01) from early CL. However, it stimulated PGF2alpha secretion in mid-cycle luteal cells (p < 0.001). AT reduced P4 secretion in early and mid-cycle CL (p < 0.05). Moreover, PGF2alpha secretion was inhibited (p < 0.05) by AT in early CL. The OT secretion and the intracellular level of free Ca2+ ([Ca2+]i) were measured as indicators of CL sensitivity to PGF2alpha. PGF2alpha had no influence on OT secretion, although [Ca2+]i increased (p < 0.05) in the early CL. However, the effect of PGF2alpha was augmented (p < 0.01) in cells after pretreatment with OP, AT, and INDO in comparison with the controls. In mid-cycle luteal cells, PGF2alpha induced 2-fold increases in OT secretion and [Ca2+]i. However, in contrast to results in early CL, these increases were magnified only by preexposure of the cells to AT (p < 0.05). These results indicate that luteal P4, OT, and PGs are components of an autocrine/paracrine positive feedback cascade in bovine early to mid-cycle CL and may be responsible for the resistance of the early bovine CL to the exogenous PGF2alpha action.  (+info)

Expression of the vasotocin gene in the hypothalamus of intact and osmotically stimulated bullfrogs during metamorphosis. (3/156)

To study the ontogeny of the vasotocin (VT) system and its contribution to anuran metamorphosis, VT mRNA levels were determined by Northern blot analysis in metamorphosing bullfrog tadpoles. Effects of osmotic stimulation on VT mRNA levels were also analyzed in order to follow the development of osmotic responsiveness of VT neurons. The intensity of hybridization signals for VT mRNA gradually increased during prometamorphic development. The increase became marked thereafter until metamorphic climax. Plasma osmolality and hematocrit remained unchanged before metamorphosis, and increased after metamorphic climax, indicating that climactic tadpoles in a semi-terrestrial environment were in a dehydrated condition. These increases correlated well with the increase in VT mRNA level. Immersion of tadpoles in 30% seawater (approximately 350 mOsmol) for 3 days increased plasma osmolality at all stages. No significant changes were observed in the VT mRNA level in response to this treatment during premetamorphic stages. The VT mRNA levels were significantly higher in the treated tadpoles after preclimax stages. Hyperosmotic treatment also increased hematocrit until early metamorphic climax, but did not alter it in tadpoles at late metamorphic climax. These results suggest that the responsiveness of VT-producing neurons to hyperosmotic or hypovolemic stimulation, or both, is established by the time of the metamorphic climax in bullfrog. The marked increase in VT mRNA levels at metamorphic climax stages of intact individuals is probably induced by dehydration. VT-stimulated water absorption and reabsorption in the target organs probably prevented the increase in hematocrit at late metamorphic climax. Thus VT may contribute importantly to osmoregulatory mechanisms in relation to adaptation to a semi-terrestrial habitat through the metamorphosis.  (+info)

Neurohypophyseal hormones, analogs, and fragments: their effect on puromycin-induced amnesia. (4/156)

Neurohypophyseal hormones and several of their analogs, as well as N-terminal and C-terminal fragments, have been studied for their ability to attenuate puromycin-induced amnesia in mice. [8-Lysine]vasopressin, [8-arginine]vasopressin, and the analogs des-9-glycinamide-[8-lysine]vasopressin, [1-beta-mercaptopropionic acid, 8-lysine]vasopressin, [1,6-aminosuberic acid, 8-lysine]vasopressin, [4-leucine, 8-lysine]vasopressin, glycyl-glycyl-glycyl-[8-lysine]vasopressin, [1-beta-mercaptopropionic acid, 8-D-arginine]vasopressin, and [1,6-aminosuberic acid, 8-arginine]vasopressin are active. [8-Arginine]oxytocin as well as oxytocin and all of its other analogs tested are inactive with the striking exception of glycyl-glycyl-glycyl-oxytocin. The structural aspects of the neurohypophyseal hormones which appear to be important for significant activity in memory consolidation include the combination of a cyclic moiety containing the Tyr and Phe residues along with a basic residue in position 8. Another series of active compounds comprises C-terminal neurohypophyseal peptides and analogs thereof, including the naturally occurring Pro-Leu-Gly-NH2 and, most surprisingly, Leu-Gly-NH2, as well as its derivatives D-Leu-Gly-NH2 and the diketopiperazine, cyclo(-Leu-Gly-).  (+info)

Neurohypophysial peptides as retrograde transmitters in the supraoptic nucleus of the rat. (5/156)

A possible role for vasopressin and oxytocin in the physiology of the supraoptic nucleus was investigated using nystatin-perforated patch recording in acute brain slices from the rat containing the supraoptic nucleus. We observed that exogenously applied oxytocin reduced glutamate-mediated synaptic transmission by acting at a presynaptic oxytocin receptor. Endogenous oxytocin, released either by afferent excitation (tetanus) or by postsynaptic depolarization of the recorded magnocellular neurone caused a similar reduction of excitatory input and this could be blocked with an oxytocin antagonist. Thus endogenous oxytocin, released from magnocellular dendrites, acts as a retrograde transmitter to reduce afferent excitation. We discuss the possible significance of these results in terms of the physiological role of oxytocin in the intact animal and suggest possible avenues for further experimentation.  (+info)

Angiotensin-(1-7) increases osmotic water permeability in isolated toad skin. (6/156)

Angiotensin-(1-7) (Ang-(1-7)) increased osmotic water permeability in the isolated toad skin, a tissue with functional properties similar to those of the distal mammalian nephron. Concentrations of 0.1 to 10 microM were effective, with a peak at 20 min. This effect was similar in magnitude to that of frog skin angiotensin II (Ang II) and oxytocin but lower than that of human Ang II and arginine-vasotocin. The AT2 angiotensin receptor antagonist PD 123319 (1.0 microM) fully inhibited the response to 0.1 microM Ang-(1-7) but had no effect on the response to Ang II at the same concentration. The specific receptor antagonist of Ang-(1-7), A-779, was ineffective in blocking the response to Ang-(1-7) and to frog skin Ang II. The AT1 receptor subtype antagonist losartan, which blocked the response to frog skin Ang II, was ineffective in blocking the response to Ang-(1-7). The present results support the view of an antidiuretic action of Ang-(1-7) in the mammalian nephron.  (+info)

Neurohypophysial hormone receptors and second messengers in trout hepatocytes. (7/156)

Neurohypophysial hormone receptors and second messengers were studied in trout (Oncorhynchus mykiss) hepatocytes. Arginine vasotocin (AVT) and isotocin (IT) elicited a concentration-dependent inhibition of cAMP accumulation in the presence of 5x10(-8) M glucagon (maximal effect for 4.5x10(-7) M and 1.4x10(-7) M, half-maximal effect for 2.1x10(-8) M and 0.7x10(-8) M, AVT and IT respectively). The effect of glucagon was inhibited up to 90% by AVT and 80% by IT. While AVT inhibited (up to 50%) the basal cAMP production, IT had no such action. Specific V(1) or V(2) analogues (with reference to vasopressin in mammals) were used for pharmacological characterization of the type of neurohypophysial hormone receptor involved in this inhibition. The V(1) agonist [Phe(2), Orn(8)]-oxytocin inhibited the glucagon-stimulated cAMP production with a maximal effect for 6x10(-7) M and a half-maximal effect for 0.9x10(-8) M concentrations of the analogue. While the V(1) agonist reduced the glucagon-stimulated cAMP level by 70%, it showed only a tendency to reduce the basal level. The V(2) agonist [deamino(1), Val(4),d -Arg(8)]-vasopressin had no effect either on basal or on glucagon-stimulated cAMP production. The V(1) antagonist [d(CH(2))(5)(1), O-Me-Tyr(2), Arg(8)]-vasopressin totally reversed the 10(-8) M AVT-induced inhibition of 5x10(-8) M glucagon-stimulated cAMP production, whereas the V(2) antagonist [d(CH(2))(5)(1),d -Ile(2), Ile(4), Arg(8), Ala(9)]-vasopressin had no such effect. In this particular case, maximal and half-maximal effects of the V(1) antagonist were obtained for 2.3x10(-6) M and 1. 2x10(-6 )M respectively. Changes in intracellular calcium content were measured using the fluorescent probe FURA-2/AM. AVT and IT elicited a concentration-dependent increase in Ca(2+) accumulation. The comparison of the effect of 10(-8) M agonists versus AVT showed the following order of potency: AVT=IT>V(1) agonist>V(2) agonist. The V(1) antagonist reversed the AVT-induced Ca(2+) accumulation whereas the V(2) antagonist had no such effect. These results are taken as evidence for the presence in trout hepatocytes of neurohypophysial hormone receptors functionally close to the V(1a)-type linked to cAMP production and Ca(2+) mobilization.  (+info)

Effect of oxytocin receptor blockade on rat myometrial responsiveness to prostaglandin f(2)(alpha). (8/156)

In the present study we have shown that the genetic expression of prostaglandin (PG)F(2alpha) receptor (R) and cyclooxygenase (COX)-2 increases in laboring rat myometrium. This finding was associated with a relatively weak contractile in vitro response (E:(max)) of isolated uterine strips when challenged with PGF(2alpha). Five days postpartum PGF(2alpha)-R mRNA values exceeded those during labor while COX-2 mRNA was reduced to preparturient values. Maximal contractility of isolated strips stimulated with PGF(2alpha) at this time was enhanced and E:C(50) decreased. Oxytocin treatment of estrogen-primed nonpregnant rats down-regulated uterine contractile responsiveness to PGF(2alpha), leaving mRNA values for this receptor unchanged, whereas oxytocin receptor blockade with atosiban (an oxytocin receptor antagonist) left E:(max) unaltered. In contrast, atosiban treatment of pregnant rats resulted in a 2.5-fold increase in E:(max) and a considerably reduced EC(50) during labor when compared to untreated delivering rats. The increased contractile ability was associated with a threefold increase in PGF(2alpha)-R mRNA production, indicating that the regulation by atosiban of the PGF(2alpha)-induced response is exerted at the genetic level. Based on the present data we suggest that 1) PGF(2alpha)-R stimulation may not primarily exert a contracting role in the normally delivering myometrium, and 2) the presence of the PGF(2alpha)-R system in rat myometrium may explain the apparent functional redundancy of the oxytocinergic system during the process of birth in animals lacking oxytocin or where the oxytocin receptor is blocked. In this context PGF(2alpha) receptor stimulation may, in the absence of oxytocin receptor stimulation, exert the contractile forces needed for proper propulsion of the fetus.  (+info)