Human calf microvascular compliance measured by near-infrared spectroscopy. (49/1013)

The purpose of this study is to develop a new method for the measurement in humans of the compliance of the microvascular superficial venous system of the lower limb by near-infrared spectroscopy (NIRS). This method is complementary to strain-gauge plethysmography, which does not allow compliance between deep and superficial venous or between venous and arterial compartments to be distinguished. In practice, hydrostatic pressure (P) changes were induced in a calf region of interest by head-up tilt of the subject from alpha = -10 to 75 degrees. For P < or = 24 mmHg, the measured compliance [0.086 +/- 0.005 (SD) ml. l(-1). mmHg(-1)] based on NIRS data of total, deoxygenated, and oxygenated hemoglobin, reflects essentially that of the superficial venous system. For P > or = 24 mmHg, no distinction can be made between arterial and venous volumes changes. However, by following the changes in oxy- and deoxyhemoglobin in the P range -16 to 100 mmHg, it appears to be possible to assess the characteristics of the vasomotor response of the arteriolar system.  (+info)

The impact of coronary artery disease on the coronary vasomotor response to nonionic contrast media. (50/1013)

BACKGROUND: Coronary artery disease (CAD) alters the vasomotor response to a variety of pharmacological agents. We tested the hypothesis that CAD also has an impact on the coronary vasomotor response to radiologic contrast media. METHODS AND RESULTS: We performed quantitative coronary angiography in 42 patients without angiographic evidence of CAD and 38 patients with CAD in the left coronary artery. Angiographically smooth coronary segments (n=235) were analyzed for changes on luminal diameters and coronary venous oxygen saturation in response to 3 media: the nonionic dimer iodixanol, the nonionic monomer iopromide, and the ionic agent ioxaglate. In subjects without CAD, we assessed the effects of intracoronary administration of the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine and of the cyclooxygenase inhibitor indomethacin on such changes. Iodixanol induced coronary vasodilation in subjects without CAD (8.8+/-8.6%, P<0.001). Patients with CAD exhibited no significant diameter changes in segments >/=20 mm apart from a stenosis (4.7+/-9.4%, P=NS) and significant constriction in segments <20 mm from a stenosis (-3.8+/-4.6%, P<0. 05). Similar results were obtained with iopromide, but no changes were found with ioxaglate. All contrast media induced transient (<35 seconds) increases in coronary venous oxygen saturation in all subjects. Indomethacin, but not N(G)-monomethyl-L-arginine, blunted the vasodilating effect of iodixanol and iopromide (by 80% and 76%, respectively; P<0.001). CONCLUSIONS: Nonionic contrast media induce a vasodilatory response in normal vessels not by a mechanism involving increased flow or endothelial nitric oxide synthesis, but rather by depending on preserved vascular cyclooxygenase activity. CAD changes normal epicardial vasodilatory response into vasoconstriction.  (+info)

Tyrosine phosphorylation modulates arteriolar tone but is not fundamental to myogenic response. (51/1013)

The present study investigated the role of protein tyrosine phosphorylation in myogenic responsiveness of rat skeletal muscle arterioles. Arteriolar segments were cannulated and pressurized without intraluminal flow. All vessels studied developed spontaneous tone and demonstrated significant myogenic constriction to step changes in pressure with a resultant increase in myogenic tone over an intraluminal pressure range of 50-150 mmHg. Step increases in intraluminal pressure from 50 to 120 mmHg caused a rapid and sustained elevation in intracellular [Ca(2+)], as measured using fura 2. Vessels with myogenic tone dilated in response to tyrosine kinase inhibitors genistein (10 or 30 microM) and tyrphostin A47 (10 or 30 microM) and constricted to the tyrosine phosphatase inhibitor pervanadate (1 or 10 microM). Despite the dilator effect, myogenic reactivity was not blocked by the inhibitors. Daidzein (10 microM), a compound structurally similar to genistein but without tyrosine kinase-inhibiting activity, did not alter vessel tone or myogenic responses. Preincubation of arterioles with genistein or tyrphostin A47 did not significantly alter baseline arteriolar [Ca(2+)], and neither drug reduced the increase in [Ca(2+)] following an acute increase in intraluminal pressure. Constriction induced by pervanadate (10 microM) was not accompanied by a significant increase in intracellular [Ca(2+)], even though removal of extracellular Ca(2+) reversed the constriction. Examination of smooth muscle tyrosine phosphorylation, using a fluorescent phosphotyrosine antibody and confocal microscopy, showed that increased intraluminal pressure resulted in an increase in anti-phosphotyrosine fluorescence. Because manipulation of tyrosine kinase activity was found to alter vessel diameter, these data support a role for tyrosine phosphorylation in modulation of arteriolar tone. However, the results indicate that acute arteriolar myogenic constriction does not require tyrosine phosphorylation.  (+info)

Effects of recombinant eNOS gene expression on reactivity of small cerebral arteries. (52/1013)

Resistance arteries are an important target for vascular gene therapy because they play a key role in the regulation of tissue blood flow. The present study was designed to determine the effects of recombinant endothelial (e) nitric oxide synthase (NOS) gene expression on vasomotor reactivity of small brain stem arteries (internal diameter, 253 +/- 2.5 microm). Arterial rings were exposed ex vivo to an adenoviral vector (10(9) and 10(10) plaque-forming units/ml) encoding eNOS gene or beta-galactosidase gene. Twenty-four hours after transduction, vascular function was examined by isometric force studies. Transgene expression was evident mainly in adventitia. In arteries with endothelium transduced with eNOS gene but not with control beta-galactosidase gene, relaxations to bradykinin and substance P were significantly augmented. Removal of endothelium abolished relaxations to bradykinin and substance P in control and beta-galactosidase arteries. However, in endothelium-denuded arteries transduced with recombinant eNOS, bradykinin and substance P caused relaxations that were abolished in the presence of the NOS inhibitor N(G)-nitro-L-arginine methyl ester. In control arteries, endothelium removal augmented relaxations to the nitric oxide donors sodium nitroprusside and diethylamine NONOate. This augmentation was absent in eNOS gene-transduced arteries without endothelium. Our results suggest that, in small brain stem arteries, expression of recombinant eNOS increases biosynthesis of nitric oxide. Adventitia of small arteries is a good target for expression of recombinant eNOS. Genetically engineered adventitial cells may serve as a substitute source of nitric oxide in cerebral arteries with dysfunctional endothelium.  (+info)

Effects of autonomic disruption and inactivity on venous vascular function. (53/1013)

The effects of autonomic disruption and inactivity were studied on the venous vascular system. Forty-eight subjects, 24 with spinal cord injury (SCI) and 12 sedentary and 12 active able-bodied controls, participated in this study. Peripheral autonomic data were obtained to estimate sympathetic vasomotor control [low-frequency component of systolic blood pressure (LF(SBP))]. Vascular parameters were determined using strain-gauge venous occlusion plethysmography: venous capacitance (VC), venous emptying rate (VER), and total venous outflow (VO(t)). An additional vascular parameter was calculated: venous compliance [(VC/occlusion pressure) x 100]. VC and VO(t) were significantly different (SCI < sedentary < active). VER adjusted for VC was not different for any group comparison, whereas venous compliance was significantly lower in the SCI group than in the able-bodied groups and in the sedentary group compared with the active group. Regression analysis for the total group revealed a significant relationship between LF(SBP) and venous compliance (r = 0.64, P < 0.0001). After controlling for LF(SBP) through analysis of covariance, we found that mean differences for all venous vascular parameters did not change from unadjusted mean values. Our findings suggest that in subjects with SCI, the loss of sympathetic vasomotor tone contributes more than inactivity to reductions in venous vascular function. Heightened VC, VO(t), vasomotor tone, and venous compliance in the active group compared with the sedentary group imply that regular endurance training contributes to optimal venous vascular function and peripheral autonomic integrity.  (+info)

Gene transfer of calcitonin gene-related peptide to cerebral arteries. (54/1013)

Overexpression of calcitonin gene-related peptide (CGRP), an extremely potent vasodilator, to blood vessels is a possible strategy for prevention of vasospasm. We constructed an adenoviral vector that encodes prepro-CGRP (Adprepro-CGRP) and examined the effects of gene transfer on cultured cells and cerebral arteries. Transfection of Adprepro-CGRP to Cos-7 and NIH-3T3 cells increased CGRP-like immunoreactivity in media and produced an increase in cAMP in recipient cells. Five days after injection of Adprepro-CGRP into the cisterna magna of rabbits, the concentration of CGRP-like immunoreactivity increased by 93-fold in cerebrospinal fluid. In basilar artery, cAMP increased by 2.3-fold after Adprepro-CGRP compared with a control adenovirus. After transfection of Adprepro-CGRP, contraction of basilar artery in vitro to histamine and serotonin was attenuated, and relaxation to an inhibitor of cyclic nucleotide phosphodiesterase 3-isobutyl-1-methylxanthine was augmented compared with nontransduced arteries or arteries transfected with a control gene. Altered vascular responses were restored to normal by pretreatment with a CGRP(1) receptor antagonist CGRP-(8-37). Thus gene transfer of prepro-CGRP in vivo overexpresses CGRP in cerebrospinal fluid and perivascular tissues and modulates vascular tone. We speculate that this approach may be useful in prevention of vasospasm after subarachnoid hemorrhage.  (+info)

Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries. (55/1013)

To assess effects of smooth muscle energy state and intracellular pH (pH(i)) on pulmonary arterial tone during hypoxia, we measured ATP, phosphocreatine, P(i), and pH(i) by (31)P-NMR spectroscopy and isometric tension in phenylephrine-contracted rings of porcine proximal intrapulmonary arteries. Hypoxia caused early transient contraction followed by relaxation and late sustained contraction. Energy state and pH(i) decreased during relaxation and recovered toward control values during late contraction. Femoral arterial rings had higher energy state and lower pH(i) under baseline conditions and did not exhibit late contraction or recovery of energy state and pH(i) during hypoxia. In pulmonary arteries, glucose-free conditions abolished late hypoxic contraction and recovery of energy state and pH(i), but endothelial denudation abolished only late hypoxic contraction. NaCN had little effect at 0. 1 and 1.0 mM but caused marked vasorelaxation and decreases in energy state and pH(i) at 10 mM. These results suggest that 1) regulation of tone, energy state, and pH(i) differed markedly in pulmonary and femoral arterial smooth muscle, 2) hypoxic relaxation was mediated by decreased energy state or pH(i) due to hypoxic inhibition of oxidative phosphorylation, 3) recovery of energy state and pH(i) in hypoxic pulmonary arteries was due to accelerated glycolysis mediated by mechanisms intrinsic to smooth muscle, and 4) late hypoxic contraction in pulmonary arteries was mediated by endothelial factors that required hypoxic recovery of energy state and pH(i) for transduction in smooth muscle or extracellular glucose for production and release by endothelium.  (+info)

Epoxyeicosatrienoic acids constrict isolated pressurized rabbit pulmonary arteries. (56/1013)

Little information is available regarding the vasoactive effects of epoxyeicosatrienoic acids (EETs) in the lung. We demonstrate that 5, 6-, 8,9-, 11,12-, and 14,15-EETs contract pressurized rabbit pulmonary arteries in a concentration-dependent manner. Constriction to 5,6-EET methyl ester or 14,15-EET is blocked by indomethacin or ibuprofen (10(-5) M), SQ-29548, endothelial denuding, or submaximal preconstriction with the thromboxane mimetic U-46619. Constriction of pulmonary artery rings to phenylephrine is blunted by treatment with the epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide. Pulmonary arteries and peripheral lung microsomes metabolize arachidonate to products that comigrate on reverse-phrase HPLC with authentic regioisomers of 5,6-, 8,9-, 11,12-, and 14,15-EETs, but no cyclooxygenase products of EETs could be demonstrated. Proteins of the CYP2B, CYP2E, CYP2J, CYP1A, and CYP2C subfamilies are present in pulmonary artery and peripheral lung microsomes. Constriction of isolated rabbit pulmonary arteries to EETs is nonregioselective and depends on intact endothelium and cyclooxygenase, consistent with the formation of a pressor prostanoid compound. These data raise the possibility that EETs may contribute to regulation of pulmonary vascular tone.  (+info)