Transdermal nitroglycerine enhances spinal sufentanil postoperative analgesia following orthopedic surgery. (25/7071)

BACKGROUND: Sufentanil is a potent but short-acting spinal analgesic used to manage perioperative pain. This study evaluated the influence of transdermal nitroglycerine on the analgesic action of spinal sufentanil in patients undergoing orthopedic surgery. METHODS: Fifty-six patients were randomized to one of four groups. Patients were premedicated with 0.05-0.1 mg/kg intravenous midazolam and received 15 mg bupivacaine plus 2 ml of the test drug intrathecally (saline or 10 microg sufentanil). Twenty to 30 min after the spinal puncture, a transdermal patch of either 5 mg nitroglycerin or placebo was applied. The control group received spinal saline and transdermal placebo. The sufentanil group received spinal sufentanil and transdermal placebo. The nitroglycerin group received spinal saline and transdermal nitroglycerine patch. Finally, the sufentanil-nitroglycerin group received spinal sufentanil and transdermal nitroglycerine. Pain and adverse effects were evaluated using a 10-cm visual analog scale. RESULTS: The time to first rescue analgesic medication was longer for the sufentanil-nitroglycerin group (785+/-483 min) compared with the other groups (P<0.005). The time to first rescue analgesics was also longer for the sufentanil group compared with the control group (P<0.05). The sufentanil-nitroglycerin group group required less rescue analgesics in 24 h compared with the other groups (P<0.02) and had lesser 24-h pain visual analog scale scores compared with the control group (P<0.005), although these scores were similar to the sufentanil and nitroglycerin groups (P>0.05). The incidence of perioperative adverse effects was similar among groups (P>0.05). CONCLUSIONS: Transdermal nitroglycerine alone (5 mg/day), a nitric oxide generator, did not result in postoperative analgesia itself, but it prolonged the analgesic effect of spinal sufentanil (10 microg) and provided 13 h of effective postoperative analgesia after knee surgery.  (+info)

Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. (26/7071)

OBJECTIVES: We assessed whether the intravenous administration of nicorandil, an adenosine triphosphate (ATP)-sensitive K+ channel opener, exerts beneficial effect on microvascular function and functional and clinical outcomes in patients with acute myocardial infarction (AMI). BACKGROUND: Experimental studies documented that ATP-sensitive K+ channel opener exerts cardioprotection after prolonged ischemia. METHODS: We randomly divided 81 patients with a first anterior AMI into two groups, nicorandil (n = 40) and control groups (n = 41). All patients received successful coronary angioplasty within 12 h after the symptom onset and underwent myocardial contrast echcardiography (MCE) with the intracoronary injection of sonicated microbubbles. In the nicorandil group, we injected 4 mg of nicorandil followed by the infusion at 6 mg/h for 24 h and by oral nicorandil (15 mg/day). RESULTS: The improvement in regional left ventricular function, wall motion score and regional wall motion was significantly better in the nicorandil group then in the control group. Intractable congestive heart failure, malignant ventricular arrhythmia and pericardial effusion were more frequently found in the control group than in the nicorandil group (15% vs. 37%, 5% vs. 20% and 8% vs. 37%, p < 0.05, respectively). The frequency of sizable MCE no reflow phenomenon was significantly lower in the nicorandil group than in the control group (15% vs. 33%, p < 0.05). CONCLUSIONS: Intravenous nicorandil in conjunction with coronary angioplasty is associated with better functional and clinical outcomes compared to angioplasty alone in patients with an anterior AMI. Myocardial contrast echocardiography findings imply that an improvement in microvascular function with nicorandil may be attributable to this better outcome.  (+info)

Integrated evaluation of relation between coronary lesion features and stress echocardiography results: the importance of coronary lesion morphology. (27/7071)

OBJECTIVES: The aim of this study was to analyze, in the same group of patients, the relationship between multiple variables of coronary lesion and results of exercise, dobutamine and dipyridamole stress echocardiography tests. BACKGROUND: Integrated evaluation of the relation between stress echocardiography results and angiographic variables should include not only the assessment of stenosis severity but also evaluation of other quantitative and qualitative features of coronary stenosis. METHODS: Study population consisted of 168 (138 male, 30 female, mean age 51+/-9 years) patients, on whom exercise (Bruce treadmill protocol), dobutamine (up to 40 mcg/kg/min) and dipyridamole (0.84 mg/kg over 10 min) stress echocardiography tests were performed. Stress echocardiography test was considered positive for myocardial ischemia when a new wall motion abnormality was observed. One-vessel coronary stenosis ranging from mild stenosis to complete obstruction of the vessel was present in 153 patients, and 15 patients had normal coronary arteries. The observed angiographic variables included particular coronary vessel, stenosis location, the presence of collaterals, plaque morphology according to Ambrose classification, percent diameter stenosis and obstruction diameter as assessed by quantitative coronary arteriography. RESULTS: Covariates significantly associated with the results of physical and pharmacological stress tests included for all three stress modalities presence of collateral circulation, percent diameter stenosis and obstruction diameter, as well as lesion morphology (p < 0.05 for all, except collaterals for dobutamine stress test, p = 0.06). By stepwise multiple logistic regression analysis, the strongest predictor of the outcome of exercise echocardiography test was only percent diameter stenosis (p = 0.0002). However, both dobutamine and particularly dipyridamole stress echocardiography results were associated not only with stenosis severity - percent diameter stenosis (dobutamine, p = 0.04; dipyridamole, p = 0.003) - but also, and even more strongly, with lesion morphology (dobutamine, p = 0.006; dipyridamole, p = 0.0009). As all of stress echocardiography results were significantly associated with percent diameter stenosis, the best angiographic cutoff in relation to the results of stress echocardiography test was: exercise, 54%; dobutamine, 58% and dipyridamole, 60% (p < 0.05 vs. exercise). CONCLUSIONS: Integrated evaluation of angiographic variables have shown that the results of dobutamine and dipyridamole stress echocardiography are not only influenced by stenosis severity but also, and even more importantly, by plaque morphology. The results of exercise stress echocardiography, although separately influenced by plaque morphology, are predominantly influenced by stenosis severity, due to a stronger exercise capacity in provoking myocardial ischemia in milder forms of coronary stenosis.  (+info)

Abnormal flow-mediated epicardial vasomotion in human coronary arteries is improved by angiotensin-converting enzyme inhibition: a potential role of bradykinin. (28/7071)

OBJECTIVES: This study was performed to determine whether angiotensin converting enzyme (ACE) inhibition improves endothelium-dependent flow-mediated vasodilation in patients with atherosclerosis or its risk factors and whether this is mediated by enhanced bradykinin activity. BACKGROUND: Abnormal coronary vasomotion due to endothelial dysfunction contributes to myocardial ischemia in patients with atherosclerosis, and its reversal may have an antiischemic action. Previous studies have shown that ACE inhibition improves coronary endothelial responses to acetylcholine, but whether this is accompanied by improved responses to shear stress remains unknown. METHODS: In 19 patients with mild atherosclerosis, metabolic vasodilation was assessed during cardiac pacing. Pacing was repeated during separate intracoronary infusions of low-dose bradykinin (BK) and enalaprilat. Endothelium-dependent and -independent vasodilation was estimated with intracoronary BK and sodium nitroprusside respectively. RESULTS: Enalaprilat did not alter either resting coronary vascular tone or dilation with sodium nitroprusside, but potentiated BK-mediated dilation. Epicardial segments that constricted abnormally with pacing (-5+/-1%) dilated (3+/-2%) with pacing in the presence of enalaprilat (p = 0.002). Similarly, BK at a concentration (62.5 ng/min) that did not alter resting diameter in the constricting segments also improved the abnormal response to a 6+/-1% dilation (p < 0.001). Cardiac pacing-induced reduction in coronary vascular resistance of 27+/-4% (p < 0.001) remained unchanged after enalaprilat. CONCLUSIONS: Thus ACE inhibition: A) selectively improved endothelium-dependent but not-independent dilation, and B) abolished abnormal flow-mediated epicardial vasomotion in patients with endothelial dysfunction, in part, by increasing endogenous BK activity.  (+info)

Endothelium-dependent relaxation by acetylcholine is impaired in hypertriglyceridemic humans with normal levels of plasma LDL cholesterol. (29/7071)

OBJECTIVES: Patients with high triglyceride (of which very low density lipoproteins [VLDL] are the main carriers), but with normal low density lipoprotein (LDL) cholesterol levels, were examined for in vivo endothelium function status. BACKGROUND: Very low density lipoproteins inhibit endothelium-dependent, but not -independent, vasorelaxation in vitro. METHODS: Three groups were studied: 1) healthy volunteers (n = 10; triglyceride 1.24+/-0.14 mmol/liter, LDL cholesterol 2.99+/-0.24 mmol/liter); 2) hypertriglyceridemic (n = 11; triglyceride 6.97+/-1.19 mmol/liter, LDL cholesterol 2.17+/-0.2 mmol/liter, p < 0.05); and 3) hypercholesterolemic (n = 10; triglyceride 2.25+/-0.29 mmol/liter, LDL cholesterol 5.61+/-0.54 mmol/liter; p < 0.05) patients. Vasoactive responses to acetylcholine, sodium nitroprusside, noradrenaline, N(G)-monomethyl-L-arginine and postischemic hyperemia were determined using forearm venous occlusion plethysmography. RESULTS: Responses to acetylcholine (37 microg/min) were significantly dampened both in hypercholesterolemic (% increase in forearm blood flow: 268.2+/-62) and hypertriglyceridemic patients (232.6+/-45.2) when compared with controls (547.8+/-108.9; ANOVA p < 0.05). Responses to sodium nitroprusside (at 1.6 microg/min: controls vs. hypercholesterolemics vs. hypertriglyceridemic: 168.7+/- 25.1 vs. 140.6+/-38.9 vs. 178.5+/-54.5% increase), noradrenaline, N(G)-monomethyl-L-arginine and postischemic hyperemic responses were not different among the groups examined. CONCLUSIONS: Acetylcholine responses are impaired in patients with pathophysiologic levels of plasma triglycerides but normal plasma levels of LDL cholesterol. The impairment observed was comparable to that obtained in hypercholesterolemic patients. We conclude that impaired responses to acetylcholine normally associated with hypercholesterolemia also occur in hypertriglyceridemia. These findings identify a potential mechanism by which high plasma triglyceride levels may be atherogenic independent of LDL cholesterol levels.  (+info)

Combined effects of nitric oxide and oxygen during acute pulmonary vasodilator testing. (30/7071)

OBJECTIVES: We compared the ability of inhaled nitric oxide (NO), oxygen (O2) and nitric oxide in oxygen (NO+O2) to identify reactive pulmonary vasculature in pulmonary hypertensive patients during acute vasodilator testing at cardiac catheterization. BACKGROUND: In patients with pulmonary hypertension, decisions regarding suitability for corrective surgery, transplantation and assessment of long-term prognosis are based on results obtained during acute pulmonary vasodilator testing. METHODS: In group 1, 46 patients had hemodynamic measurements in room air (RA), 100% O2, return to RA and NO (80 parts per million [ppm] in RA). In group 2, 25 additional patients were studied in RA, 100% O2 and 80 ppm NO in oxygen (NO+O2). RESULTS: In group 1, O2 decreased pulmonary vascular resistance (PVR) (mean+/-SEM) from 17.2+/-2.1 U.m2 to 11.1+/-1.5 U.m2 (p < 0.05). Nitric oxide caused a comparable decrease from 17.8+/-2.2 U.m2 to 11.7+/-1.7 U.m2 (p < 0.05). In group 2, PVR decreased from 20.1+/-2.6 U.m2 to 14.3+/-1.9 U.m2 in O2 (p < 0.05) and further to 10.5+/-1.7 U.m2 in NO+O2 (p < 0.05). A response of 20% or more reduction in PVR was seen in 22/25 patients with NO+O2 compared with 16/25 in O2 alone (p = 0.01). CONCLUSIONS: Inhaled NO and O2 produced a similar degree of selective pulmonary vasodilation. Our data suggest that combination testing with NO + O2 provides additional pulmonary vasodilation in patients with a reactive pulmonary vascular bed in a selective, safe and expeditious fashion during cardiac catheterization. The combination of NO+O2 identifies patients with significant pulmonary vasoreactivity who might not be recognized if O2 or NO were used separately.  (+info)

Protective effect of quinaprilat, an active metabolite of quinapril, on Ca2+-overload induced by lysophosphatidylcholine in isolated rat cardiomyocytes. (31/7071)

We examined the effects of quinaprilat, an active metabolite of quinapril (an angiotensin converting enzyme (ACE) inhibitor) on the increase in intracellular concentration of Ca2+ ([Ca2+]i) (Ca2+-overload) induced by lysophosphatidylcholine (LPC) in isolated rat cardiomyocytes. LPC (15 microM) produced Ca2+-overload with a change in cell-shape from rod to round. Quinaprilat but not quinapril at 20 or 50 microM attenuated the LPC-induced increase in [Ca2+]i and the change in cell-shape in a concentration-dependent manner. Since quinaprilat has an inhibitory action on ACE and quinapril has practically no inhibitory action on ACE, it is likely that the inhibitory action of quinaprilat on ACE is necessary for the protective effect of the drug against LPC-induced changes. We therefore examined the effects of enalapril (another ACE inhibitor with the weak inhibitory action on ACE) and enalaprilat (an active metabolite of enalapril with an inhibitory action on ACE) on the LPC-induced changes. Both enalapril and enalaprilat attenuated the LPC-induced Ca2+-overload, suggesting that the inhibitory action on ACE may not mainly contribute to the protective effect of ACE inhibitors against LPC-induced Ca2+-overload. This suggestion was supported by the fact that neither ACE (0.2 U/ml) nor angiotensin II (0.1-100 microM) increased [Ca2+]i in isolated cardiomyocytes. Furthermore, application of bradykinin (0.01-10 microM) did not enhance the protective effect of quinaprilat against LPC-induced changes. LPC also increased release of creatine kinase (CK) from the myocyte markedly, and quinaprilat but not quinapril attenuated the LPC-induced CK release. Unexpectedly, both enalapril and enalaprilat did not attenuate the LPC-induced CK release. Neither quinapril nor quinaprilat changed the critical micelle concentration of LPC, suggesting that these drugs do not directly bind to LPC. We conclude that quinaprilat attenuates the LPC-induced increase in [Ca2+]i, and that the protective effect of quinaprilat on the LPC-induced change may not be related to a decrease in angiotensin II production or an increase in bradykinin production.  (+info)

Effects of nicorandil on experimentally induced gastric ulcers in rats: a possible role of K(ATP) channels. (32/7071)

The anti-ulcer effects of nicorandil [N-(2-hydroxyethyl)nicotinamide nitrate ester] were examined on water-immersion plus restraint stress-induced and aspirin-induced gastric ulcers in rats, compared with those of cimetidine. Nicorandil (3 and 10 mg/kg) given orally to rats dose-dependently inhibited the development of acid-related damage (water-immersion- and aspirin-induced gastric lesions) in the models. Cimetidine (50 mg/kg, p.o.) also had anti-ulcer effects in the same models. However, in the presence of glibenclamide (20 mg/kg, i.v.), an antagonist of K(ATP) channels, nicorandil did not inhibit the formation of gastric lesions. Nicorandil (10 mg/kg) given intraduodenally (i.d.), like cimetidine (50 mg/kg), significantly reduced the volume of the gastric content, total acidity and total acid output in the pylorus ligation model. Glibenclamide reversed the changes caused by i.d. nicorandil. I.v. infusion of nicorandil (20 microg/kg per min) significantly increased gastric mucosal blood flow, without affecting blood pressure and heart rate, but the increase in the blood flow was not observed after i.v. treatment with glibenclamide (20 mg/kg). These results indicate that nicorandil administered orally to rats produces the anti-ulcer effect by reducing the aggressive factors and by enhancing the defensive process in the mucosa through its K(ATP)-channel-opening property.  (+info)