Effects of temperature and preservation time on the pharmacological response of isolated vascular endothelial and smooth muscle function. (25/3794)

In clinical transplantation and cardiovascular surgery, cold preservation is usually used because it is a simple method. However, the established temperature is by no means exact. The aim of this study was to find the optimum storage temperature for preservation of the vasculature by observing the pharmacological endothelium and smooth muscle response. The thoracic aorta of 36 male Wister rats were studied in organ baths: as fresh control after 24 hours, 48 hours and 72 hours of storage at 0.5 degree C, 4 degrees C and 8 degrees C in Krebs-Henseleit bicarbonate (KHB) solution. Acetylcholine (Ach) was used to elicit endothelium-dependent relaxation, and sodium nitroprusside (SNP) to elicit smooth muscle-dependent relaxation. The contractility caused by Phenylephrine (Ph) was influenced by time but before 48 hours it was not influenced by preservation temperature. Significant responsive deterioration by Ach and SNP was seen after 24 hours of storage at 0.5 degree C as compared with storage at 4 degrees C. The endothelium-dependent relaxing function and smooth muscle-dependent relaxing function were best preserved at 4 degrees C and 8 degrees C. These results indicate that precise temperature control is necessary for vessel preservation in clinical situations.  (+info)

Effect of Ox-LDL on endothelium-dependent response in pig ciliary artery: prevention by an ET(A) antagonist. (26/3794)

PURPOSE: To investigate whether oxidized low-density lipoprotein (Ox-LDL) affects endothelium-dependent responses in isolated porcine ciliary arteries. METHODS: In a myograph system for isometric force measurements, quiescent vessels were incubated with 50 microg/ml, 100 microg/ml, or 200 microg/ml Ox-LDL; 100 microg/ml native LDL (n-LDL); 1 microM of the ET(A)- endothelin receptor antagonist BQ 123; 100 microg/ml Ox-LDL coadministered with 1 microM BQ 123; or 100 microg/ml Ox-LDL coadministered with 50 microM of the protein synthesis inhibitor cycloheximide. Vessels with nonfunctional endothelium (intentionally and mechanically damaged) were also exposed to 100 microg/ml Ox-LDL. Two hours later, vessels were washed, precontracted with the thromboxane A2 analog U 46619 (approximately 0.1 microM), and exposed to bradykinin (0.1 nM to 3 microM), an endothelium-dependent relaxing agent. RESULTS: In quiescent vessels, Ox-LDL evoked delayed contractions. In contrast, no contractions were observed after exposure to n-LDL, BQ 123, Ox-LDL with BQ 123, or Ox-LDL with cycloheximide. In vessels with nonfunctional endothelium, Ox-LDL did not evoke contraction. Bradykinin-induced relaxations were inhibited in a dose-dependent manner by Ox-LDL, but not by n-LDL, BQ 123 alone, Ox-LDL with BQ 123, or Ox-LDL with cycloheximide. CONCLUSIONS: In porcine ciliary arteries, Ox-LDL affects endothelium-dependent responses through the activation of ET(A)- endothelin receptors. As Ox-LDL can accumulate in atherosclerotic plaques, such a mechanism might be involved in the occlusion of the ophthalmic circulation observed in patients with hypercholesterolemia and atherosclerosis.  (+info)

Effect of angiotensin II and telmisartan, an angiotensin1 receptor antagonist, on rat gastric mucosal blood flow. (27/3794)

BACKGROUND: Angiotensin II (ATII) has been suggested to contribute to shock-induced dysfunction of the gastric circulation. AIM: To substantiate this conjecture, the effects on gastric mucosal haemodynamics and the hyperaemic response to acid back-diffusion of ATII and the angiotensin AT1 receptor antagonist, telmisartan, were examined in normal rats and in animals subjected to haemorrhage. METHODS: Gastric mucosal blood flow in phenobarbital-anaesthetized rats was recorded with the hydrogen clearance technique, and acid back-diffusion was induced by perfusing the stomach with ethanol (25%) in HCl (0.05 M). RESULTS: Intravenous infusion of ATII (0.3-10 nmol/min/kg) led to dose-dependent hypertension and a reduction of blood flow and vascular conductance in the gastric mucosa. The gastric hyperaemia caused by acid back-diffusion was attenuated by ATII (1 nmol/min/kg). These effects of ATII were antagonized by intravenous injection of telmisartan (1-10 mg/kg) which per se caused hypotension and dilated the gastric mucosal vasculature, but did not modify the gastric mucosal hyperaemia evoked by acid back-diffusion. Hypotension induced by haemorrhage (1.3 mL blood per 100 g body weight) failed to alter the hyperaemia due to acid back-diffusion, but caused gastric mucosal vasoconstriction, an effect that was left unaffected by telmisartan. CONCLUSIONS: ATII constricts the rat gastric microvasculature via an action involving AT1 receptors. The effects of telmisartan indicate that endogenous ATII contributes to the homeostatic regulation of gastric vascular tone but does not compromise the ability of the gastric microvasculature to react to influxing acid. These results negate the concept that ATII contributes to the gastric vascular perturbances in haemorrhagic shock.  (+info)

Cost-effectiveness of sumatriptan in a managed care population. (28/3794)

We conducted an open-labeled study to determine whether sumatriptan is more cost-effective than other therapies used to treat migraine headache. We contacted by phone 220 sumatriptan users enrolled in QualMed, a health maintenance organization (HMO) in Spokane, Washington. Of these, 203 met the inclusion criteria and 164 (81%) completed our telephone survey. The main outcome measures were healthcare costs to the HMO and number of days free of migraine-related disability before and after sumatriptan treatment. Before sumatriptan treatment, 89% of patients reported severe migraine, compared with 63% after sumatriptan treatment. The number of monthly migraine disability days decreased from 6.5 days per month before sumatriptan to 3.9 days per month after sumatriptan. Healthcare utilization rates (ie, number of hospitalizations, emergency department visits) and costs were lower after the patients began taking sumatriptan. The number of different over-the-counter medicines and prescription medications (other than sumatriptan) taken for migraine disabilities decreased. Although total drug expenditures per month increased, the total migraine healthcare expenditure was 41% lower after sumatriptan was initiated. The cost-effectiveness ratio was 47% more favorable after patients started taking sumatriptan. Overall, patients reported fewer migraine-related disabilities, had lower migraine severity scores, and used fewer healthcare resources when taking sumatriptan. These changes resulted in a better cost-effectiveness ratio for migraine treatment.  (+info)

Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and alpha2-adrenoceptors. (29/3794)

The antimigraine drugs methysergide, ergotamine and dihydroergotamine (DHE) produce selective vasoconstriction in the external carotid bed of vagosympathectomized dogs anaesthetized with pentobarbital and artificially respired, but the receptors involved have not yet been completely characterized. Since the above drugs display affinity for several binding sites, including alpha-adrenoceptors and several 5-HT1 and 5-HT2 receptor subtypes, this study has analysed the mechanisms involved in the above responses. Intracarotid (i.c.) infusions during 1 min of methysergide (31-310 microg min(-1)), ergotamine (0.56-5.6 microg min(-1)) or DHE (5.6-31 microg min(-1)) dose-dependently reduced external carotid blood flow (ECBF) by up to 46+/-4, 37+/-4 and 49+/-5%, respectively. Blood pressure and heart rate remained unchanged. The reductions in ECBF by methysergide were abolished and even reversed to increases in animals pre-treated with GR127935 (10 microg kg(-1), i.v.). The reductions in ECBF by ergotamine and DHE remained unchanged in animals pre-treated (i.v.) with prazosin (300 microg kg(-1)), but were partly antagonized in animals pre-treated with either GR127935 (10 or 30 microg kg(-1)) or yohimbine (1000 microg kg(-1)). Pre-treatment with a combination of GR127935 (30 microg kg(-1)) and yohimbine (1000 microg kg(-1)) abolished the responses to both ergotamine and DHE. The above doses of antagonists were shown to produce selective antagonism at their respective receptors. These results suggest that the external carotid vasoconstrictor responses to methysergide primarily involve 5-HT1B/1D receptors, whereas those to ergotamine and DHE are mediated by 5-HT1B/1D receptors as well as alpha2-adrenoceptors.  (+info)

Vasorelaxation and inhibition of the voltage-operated Ca2+ channels by FK506 in the porcine coronary artery. (30/3794)

Using fura-2 fluorometry, the effects of FK506, an immunosuppressant, on changes in cytosolic Ca2+ concentrations ([Ca2+]i) and tension were investigated in porcine coronary arterial strips. The effects of FK506 on the activity of voltage-operated Ca2+ channels were examined by applying a whole cell patch clamp to the isolated smooth muscle cells of porcine coronary artery. FK506 inhibited the sustained increases in both [Ca2+]i and tension induced by 118 mM K+ depolarization and 100 nM U46619 in a concentration-dependent manner (1-30 microM). The extent of inhibition of the K+-induced contraction was greater than that of the U46619-induced contraction. The increases in [Ca2+]i and tension induced by histamine and endothelin- in the presence of extracellular Ca2+ were also inhibited by 10 microM FK506. FK506 (10 microM) had no effect on Ca2+ release induced by caffeine or by histamine in the Ca2+-free solution. FK506 (10 microM) had no effect on the [Ca2+]i-tension relationships of the contractions induced by cumulative increases of extracellular Ca2+ during K+ depolarization or stimulation with U46619. In the patch clamp experiments, FK506 (30 microM) partially inhibited the inward current induced by depolarization pulse from -80 mV to 0 mV. In conclusion, FK506 induces arterial relaxation by decreasing [Ca2+]i mainly due to the inhibition of the L-type Ca2+ channels, with no effect on the Ca2+ sensitivity of the contractile apparatus.  (+info)

Inhibition of inducible nitric oxide synthase by beta-lapachone in rat alveolar macrophages and aorta. (31/3794)

Beta-lapachone, a plant product, has been shown to be a novel inhibitor of DNA topoisomerase. In this study, we performed experiments to examine the effects of beta-lapachone on lipopolysaccharide (LPS)-induced inducible nitric oxide (NO) synthase (iNOS) in rat alveolar macrophages and aortic rings. In alveolar macrophages, incubation with LPS (10 microg ml(-1)) for various time intervals resulted in a significant increase in nitrite production and iNOS protein synthesis, that was inhibited by coincubation with beta-lapachone (1-4.5 microM) without any cytotoxic effects. However, addition of beta-lapachone after induction of NO synthase by LPS failed to affect the nitrite production. Treatment with LPS (10 microg ml(-1)) for 6 h resulted in significant expression of mRNA for iNOS which was significantly inhibited in the presence of beta-lapachone (3 microM) in alveolar macrophages. In endothelium-intact rings of thoracic aorta, beta-lapachone (1 and 3 microM) markedly inhibited the hypocontractility to phenylephrine in aortic rings treated with LPS (10 microg ml(-1)) for 4 h. When beta-lapachone was added 3 h after LPS into the medium, the contractions evoked by phenylephrine were not significantly different in the presence or absence of beta-lapachone. Treatment with LPS (10 microg ml(-1)) for 4 h resulted in a significant increase in iNOS protein synthesis which was inhibited in the presence of beta-lapachone (3 microM), but did not affect the constitutive (endothelial and neuronal) NOS forms in aortic rings. These results indicate that beta-lapachone is capable of inhibiting expression and function of iNOS in rat alveolar macrophages and aortic rings. It is considered that beta-lapachone can be developed as a potential anti-inflammatory agent in the future.  (+info)

Effects of vasopressin on the sympathetic contraction of rabbit ear artery during cooling. (32/3794)

In order to analyse the effects of arginine-vasopressin on the vascular contraction to sympathetic nerve stimulation during cooling, the isometric response of isolated, 2-mm segments of the rabbit central ear (cutaneous) artery to electrical field stimulation (1-8 Hz) was recorded at 37 and 30 degrees C. Electrical stimulation (37 degrees C) produced frequency-dependent arterial contraction, which was reduced at 30 degrees C and potentiated by vasopressin (10 pM, 100 pM and 1 nM). This potentiation was greater at 30 than at 37 degrees C and was abolished at both temperatures by the antagonist of vasopressin V1 receptors d(CH2)5 Tyr(Me)AVP (100 nM). Desmopressin (1 microM) did not affect the response to electrical stimulation. At 37 degrees C, the vasopressin-induced potentiation was abolished by the purinoceptor antagonist PPADS (30 microM), increased by phentolamine (1 microM) or prazosin (1 microM) and not modified by yohimbine (1 microM), whilst at 30 degrees C, the potentiation was reduced by phentolamine, yohimbine or PPADS, and was not modified by prazosin. The Ca2+-channel blockers, verapamil (10 microM) and NiCl2 (1 mM), abolished the potentiating effects of vasopressin at 37 degrees C whilst verapamil reduced and NiCl2 abolished this potentiation at 30 degrees C. The inhibitor of nitric oxide synthesis, L-NOARG (100 microM), or endothelium removal did not modify the potentiation by vasopressin at 37 and 30 degrees C. Vasopressin also increased the arterial contraction to the alpha2-adrenoceptor agonist BHT-920 (10 microM) and to ATP (2 mM) at 30 and 37 degrees C, but it did not modify the contraction to noradrenaline (1 microM) at either temperature. These results suggest that in cutaneous (ear) arteries, vasopressin potentiaties sympathetic vasoconstriction to a greater extent at 30 than at 37 degrees C by activating vasopressin V1 receptors and Ca2+ channels at both temperatures. At 37 degrees C, the potentiation appears related to activation of the purinoceptor component and, at 30 degrees C, to activation of both purinoceptor and alpha2-adrenoceptor components of the sympathetic response.  (+info)