P-Glycoprotein conformational changes detected by antibody competition. (33/716)

Conformational changes accompanying P-glycoprotein (Pgp) mediated drug transport are reflected by changes in the avidity of certain monoclonal antibodies (mAbs). More of the UIC2 mAb binds to Pgp-expressing cells in the presence of substrates or modulators [Mechetner, E.B., Schott, B., Morse, S.B., Stein, W., Druley, T., Dvis, K.A., Tsuruo, T. & Roninson, I.B. (1997) Proc. Natl Acad. Sci. USA 94, 12908-12913], while the binding of other mAbs (e.g. MM12.10, MRK16, 4E3) is not conformation sensitive. Pre-staining of Pgp+ cells with UIC2 decreased the subsequent binding of MM12.10 mAb by about 30-40%, suggesting that there are Pgp molecules available for both UIC2 and MM12.10, and others accessible only for MM12.10. In the presence of certain substrates/modulators such as vinblastin, cyclosporin A or valinomycin, the MM12.10 reactivity was completely abolished by preincubation with UIC2. However, verapamil, Tween-80 and nifedipine did not influence the ratio of bound mAbs significantly. This is the first assay to our knowledge, sharply distinguishing two classes of modulators. The conformational changes accompanying the mAb competition phenomenon appear to be closely related, though not identical to those accompanying the UIC2-shift, as suggested by the simultaneous assessment of the two phenomena.  (+info)

Mechanisms of pH regulation in the regulated secretory pathway. (34/716)

A precise pH gradient between organelles of the regulated secretory pathway is required for sorting and processing of prohormones. We studied pH regulation in live endocrine cells by targeting biotin-based pH indicators to cellular organelles expressing avidin-chimera proteins. In AtT-20 cells, we found that steady-state pH decreased from the endoplasmic reticulum (ER) (pH(ER) = 7.4 +/- 0.2, mean +/- S.D.) to Golgi (pH(G) = 6.2 +/- 0.4) to mature secretory granules (MSGs) (pH(MSG) = 5.5 +/- 0.4). Golgi and MSGs required active H(+) v-ATPases for acidification. ER, Golgi, and MSG steady-state pH values were also dependent upon the different H(+) leak rates across each membrane. However, neither steady-state pH(MSG) nor rates of passive H(+) leak were affected by Cl(-)-free solutions or valinomycin, indicating that MSG membrane potential was small and not a determinant of pH(MSG). Therefore, our data do not support earlier suggestions that organelle acidification is primarily regulated by Cl(-) conductances. Measurements of H(+) leak rates, buffer capacities, and estimates of surface areas and volumes of these organelles were applied to a mathematical model to determine the H(+) permeability (P(H+)) of each organelle membrane. We found that P(H+) decreased progressively from ER to Golgi to MSGs, and proper acidification of Golgi and MSGs required gradual decreases in P(H+) and successive increases in the active H(+) pump density.  (+info)

Active alanine transport in isolated brush border membranes. (35/716)

Uptake of L-alanine against a concentration gradient has been shown to occur with isolated brush border membranes from rat small intestine. An alanine transport system, displaying the following characteristics, was shown: (a) L-alanine was taken up and released faster than D-alanine; (b) Na+ as well as Li+ stimulated the uptake of both stereoisomers; (c) the uptake of L- and D-alanine showed saturation kinetics; (d) countertransport of L-alanine was shown; (e) other neutral amino acids inhibited L-alanine but not D-alanine entry when an electrochemical Na+ gradient across the membrane was present initially during incubation. No inhibition occurred in the absence of a Na+ gradient. The electrogenicity of L-alanine transport was established by three types of experiments: (a) Gradients of Na+ salts across the vesicle membrane (medium concentration greater than intravesicular concentration) supported a transient uptake of L-alanine above equilibrium level, and the lipophilic anion SCN- was the most effective counterion. (b) A gradient of K= across the membrane (vesicle greater than medium) likewise supported active transport of L-alanine into the vesicles provided the K= conductance of the membrane was increased with valinomycin. (c) Similarly, a proton gradient (vesicle greater than medium) in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an agent known to increase the proton conductance of membranes, produced an overshooting L-alanine uptake. A consideration of the possible forces, existing under the experimental conditions, suggests that the gradients of SCN-, K+ in the presence of valinomycin, and H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone contribute to the driving force for L-alanine transport by creating a diffusion potential. Since the presence of Na+ was required in all experiments with active L-alanine transport these results support the existence of a transport system in the brush border membrane which catalyzes the co-transport of Na+ and L-alanine across this membrane.  (+info)

Dissipation of potassium and proton gradients inhibits mitochondrial hyperpolarization and cytochrome c release during neural apoptosis. (36/716)

Exposure of rat hippocampal neurons or human D283 medulloblastoma cells to the apoptosis-inducing kinase inhibitor staurosporine induced rapid cytochrome c release from mitochondria and activation of the executioner caspase-3. Measurements of cellular tetramethylrhodamine ethyl ester fluorescence and subsequent simulation of fluorescence changes based on Nernst calculations of fluorescence in the extracellular, cytoplasmic, and mitochondrial compartments revealed that the release of cytochrome c was preceded by mitochondrial hyperpolarization. Overexpression of the anti-apoptotic protein Bcl-xL, but not pharmacological blockade of outward potassium currents, inhibited staurosporine-induced hyperpolarization and apoptosis. Dissipation of mitochondrial potassium and proton gradients by valinomycin or carbonyl cyanide p-trifluoromethoxy-phenylhydrazone also potently inhibited staurosporine-induced hyperpolarization, cytochrome c release, and caspase activation. This effect was not attributable to changes in cellular ATP levels. Prolonged exposure to valinomycin induced significant matrix swelling, and per se also caused release of cytochrome c from mitochondria. In contrast to staurosporine, however, valinomycin-induced cytochrome c release and cell death were not associated with caspase-3 activation and insensitive to Bcl-xL overexpression. Our data suggest two distinct mechanisms for mitochondrial cytochrome c release: (1) active cytochrome c release associated with early mitochondrial hyperpolarization, leading to neuronal apoptosis, and (2) passive cytochrome c release secondary to mitochondrial depolarization and matrix swelling.  (+info)

Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. (37/716)

Proximal renal tubular acidosis associated with ocular abnormalities such as band keratopathy, glaucoma, and cataracts is caused by mutations in the Na(+)-HCO(3)(-) cotransporter (NBC-1). However, the mechanism by which NBC-1 inactivation leads to such ocular abnormalities remains to be elucidated. By immunological analysis of human and rat eyes, we demonstrate that both kidney type (kNBC-1) and pancreatic type (pNBC-1) transporters are present in the corneal endothelium, trabecular meshwork, ciliary epithelium, and lens epithelium. In the human lens epithelial (HLE) cells, RT-PCR detected mRNAs of both kNBC-1 and pNBC-1. Although a Na(+)-HCO(3)-cotransport activity has not been detected in mammalian lens epithelia, cell pH (pH(i)) measurements revealed the presence of Cl(-)-independent, electrogenic Na(+)-HCO(3)-cotransport activity in HLE cells. In addition, up to 80% of amiloride-insensitive pH(i) recovery from acid load in the presence of HCO(3)(-)/CO(2) was inhibited by adenovirus-mediated transfer of a specific hammerhead ribozyme against NBC-1, consistent with a major role of NBC-1 in overall HCO(3)-transport by the lens epithelium. These results indicate that the normal transport activity of NBC-1 is indispensable not only for the maintenance of corneal and lenticular transparency but also for the regulation of aqueous humor outflow.  (+info)

Role of quinine-sensitive ion channels in volume regulation in boar and bull spermatozoa. (38/716)

The ability to reverse swelling caused by hypo-osmotic stress is an important cell function; in spermatozoa, it is likely to be of consequence during ejaculation and also during the thawing process that terminates cryopreservation. In this study, the time course of boar and bull sperm volume changes after exposure to hypo-osmotic conditions at 39 degrees C was recorded. Cell volume measurements of washed sperm suspensions were performed electronically in Hepes-buffered saline solutions of 300 and 180 mosmol kg(-1) containing 2.5 mmol K(+) l(-1). Treatment with quinine in the presence or absence of the potassium ionophore valinomycin was used to determine whether potassium channels were involved in the reversal of swelling. After exposure to hypo-osmotic conditions, both bull and boar spermatozoa showed initial swelling (up to 200% and 140% of initial volume, respectively, within 5 min), which was subsequently partially reversed (to about 150% and 120%, respectively, after 20 min). Incubation with quinine led to an increase in swelling in both species. However, bull sperm volume was already maximal (up to 294%) after 30 s and declined thereafter, whereas boar sperm volume increased slowly to a maximum of about 220% after 20 min. Valinomycin treatment caused quinine-induced swelling in bull spermatozoa to decrease rapidly to control (no quinine, no valinomycin) values, whereas in quinine-treated boar spermatozoa it had an opposite, enhancing effect. Interpreting these results in the light of data from studies by others on a variety of cell types, it is proposed that swelling-activated potassium channels are involved in regulatory volume decrease in both species of spermatozoa, but that boar spermatozoa may contain fewer swelling-activated chloride channels than do bull spermatozoa.  (+info)

Mechanism of thiamine uptake by human jejunal brush-border membrane vesicles. (39/716)

Thiamine, a water-soluble vitamin, is essential for normal cellular functions, growth and development. Thiamine deficiency leads to significant clinical problems and occurs under a variety of conditions. To date, however, little is known about the mechanism of thiamine absorption in the native human small intestine. The objective of this study was, therefore, to characterize the mechanism of thiamine transport across the brush-border membrane (BBM) of human small intestine. With the use of purified BBM vesicles (BBMV) isolated from the jejunum of organ donors, thiamine uptake was found to be 1) independent of Na(+) but markedly stimulated by an outwardly directed H(+) gradient (pH 5.5(in)/pH 7.5(out)); 2) competitively inhibited by the cation transport inhibitor amiloride (inhibitor constant of 0.12 mM); 3) sensitive to temperature and osmolarity of the incubation medium; 4) significantly inhibited by thiamine structural analogs (amprolium, oxythiamine, and pyrithiamine), but not by unrelated organic cations (tetraethylammonium, N-methylnicotinamide, or choline); 5) not affected by the addition of ATP to the inside and outside of the BBMV; 6) potential insensitive; and 7) saturable as a function of thiamine concentration with an apparent Michaelis-Menten constant of 0.61 +/- 0.08 microM and a maximal velocity of 1.00 +/- 0.47 pmol. mg protein(-1). 10 s(-1). Carrier-mediated thiamine uptake was also found in BBMV of human ileum. These data demonstrate the existence of a Na(+)-independent, pH-dependent, amiloride-sensitive, electroneutral carrier-mediated mechanism for thiamine absorption in native human small intestinal BBMV.  (+info)

Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+ ionophore A23187 and by calmodulin antagonists. (40/716)

The Ca2+ ionophore A23187 can induce chloroplast rotation within a single nonirradiated Mougeotia cell. The induced turning was dependent on the position of ionophore application and Ca2+ in the external medium. The role of calmodulin in mediating light-induced chloroplast rotation in the alga Mougeotia was investigated by using the paired calmodulin-antagonist drugs W5-W7 and W12-W13. In each pair, the antagonist with the greater affinity for calmodulin had the greater inhibitor effect on the phytochrome-controlled light response. These results support the hypothesis that calcium functions as a chemical messenger to couple the stimulus of phytochrome photoactivation with physiological responses in plants.  (+info)