Induction of apoptosis by valinomycin: mitochondrial permeability transition causes intracellular acidification. (1/716)

In order to determine whether disruption of mitochondrial function could trigger apoptosis in murine haematopoietic cells, we used the potassium ionophore valinomycin. Valinomycin induces apoptosis in the murine pre-B cell line BAF3, which cannot be inhibited by interleukin-3 addition or Bcl-2 over-expression. Valinomycin triggers rapid loss of mitochondrial membrane potential. This precedes cytoplasmic acidification, which leads to cysteine-active-site protease activation, DNA fragmentation and cell death. Bongkrekic acid, an inhibitor of the mitochondrial permeability transition, prevents acidification and subsequent induction of apoptosis by valinomycin.  (+info)

Sodium-dependent glutamate uptake by an alkaliphilic, thermophilic Bacillus strain, TA2.A1. (2/716)

A strain of Bacillus designated TA2.A1, isolated from a thermal spring in Te Aroha, New Zealand, grew optimally at pH 9.2 and 70 degrees C. Bacillus strain TA2.A1 utilized glutamate as a sole carbon and energy source for growth, and sodium chloride (>5 mM) was an obligate requirement for growth. Growth on glutamate was inhibited by monensin and amiloride, both inhibitors that collapse the sodium gradient (DeltapNa) across the cell membrane. N, N-Dicyclohexylcarbodiimide inhibited the growth of Bacillus strain TA2.A1, suggesting that an F1F0-ATPase (H type) was being used to generate cellular ATP needed for anabolic reactions. Vanadate, an inhibitor of V-type ATPases, did not affect the growth of Bacillus strain TA2.A1. Glutamate transport by Bacillus strain TA2.A1 could be driven by an artificial membrane potential (DeltaPsi), but only when sodium was present. In the absence of sodium, the rate of DeltaPsi-driven glutamate uptake was fourfold lower. No glutamate transport was observed in the presence of DeltapNa alone (i.e., no DeltaPsi). Glutamate uptake was specifically inhibited by monensin, and the Km for sodium was 5.6 mM. The Hill plot had a slope of approximately 1, suggesting that sodium binding was noncooperative and that the glutamate transporter had a single binding site for sodium. Glutamate transport was not affected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that the transmembrane pH gradient was not required for glutamate transport. The rate of glutamate transport increased with increasing glutamate concentration; the Km for glutamate was 2.90 microM, and the Vmax was 0.7 nmol. min-1 mg of protein. Glutamate transport was specifically inhibited by glutamate analogues.  (+info)

The protein import motor of mitochondria: unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. (3/716)

Mitochondrial heat shock protein 70 (mtHsp70) functions in unfolding, translocation, and folding of imported proteins. Controversial models of mtHsp70 action have been discussed: (1) physical trapping of preproteins is sufficient to explain the various mtHsp70 functions, and (2) unfolding of preproteins requires an active motor function of mtHsp70 ("pulling"). Intragenic suppressors of a mutant mtHsp70 separate two functions: a nonlethal folding defect caused by enhanced trapping of preproteins, and a conditionally lethal unfolding defect caused by an impaired interaction of mtHsp70 with the membrane anchor Tim44. Even enhanced trapping in wild-type mitochondria does not generate a pulling force. The motor function of mtHsp70 cannot be explained by passive trapping alone but includes an essential ATP-dependent interaction with Tim44 to generate a pulling force and unfold preproteins.  (+info)

-->H+/2e- stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. (4/716)

Tightly coupled bovine heart submitochondrial particles treated to activate complex I and to block ubiquinol oxidation were capable of rapid uncoupler-sensitive inside-directed proton translocation when a limited amount of NADH was oxidized by the exogenous ubiquinone homologue Q1. External alkalization, internal acidification and NADH oxidation were followed by the rapidly responding (t1/2 < or = 1 s) spectrophotometric technique. Quantitation of the initial rates of NADH oxidation and external H+ decrease resulted in a stoichiometric ratio of 4 H+ vectorially translocated per 1 NADH oxidized at pH 8.0. ADP-ribose, a competitive inhibitor of the NADH binding site decreased the rates of proton translocation and NADH oxidation without affecting -->H+/2e- stoichiometry. Rotenone, piericidin and thermal deactivation of complex I completely prevented NADH-induced proton translocation in the NADH-endogenous ubiquinone reductase reaction. NADH-exogenous Q1 reductase activity was only partially prevented by rotenone. The residual rotenone- (or piericidin-) insensitive NADH-exogenous Q1 reductase activity was found to be coupled with vectorial uncoupler-sensitive proton translocation showing the same -->H+/2e- stoichiometry of 4. It is concluded that the transfer of two electrons from NADH to the Q1-reactive intermediate located before the rotenone-sensitive step is coupled with translocation of 4 H+.  (+info)

ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. (5/716)

1. Mitochondrial dysfunction, secondary to excessive accumulation of Ca2+, has been implicated in cardiac injury. We here examined the action of potassium channel openers on mitochondrial Ca2+ homeostasis, as these cardioprotective ion channel modulators have recently been shown to target a mitochondrial ATP-sensitive K+ channel. 2. In isolated cardiac mitochondria, diazoxide and pinacidil decreased the rate and magnitude of Ca2+ uptake into the mitochondrial matrix with an IC50 of 65 and 128 microM, respectively. At all stages of Ca2+ uptake, the potassium channel openers depolarized the mitochondrial membrane thereby reducing Ca2+ influx through the potential-dependent mitochondrial uniporter. 3. Diazoxide and pinacidil, in a concentration-dependent manner, also activated release of Ca2+ from mitochondria. This was prevented by cyclosporin A, an inhibitor of Ca2+ release through the mitochondrial permeability transition pore. 4. Replacement of extramitochondrial K+ with mannitol abolished the effects of diazoxide and pinacidil on mitochondrial Ca2+, while the K+ ionophore valinomycin mimicked the effects of the potassium channel openers. 5. ATP and ADP, which block K+ flux through mitochondrial ATP-sensitive K+ channels, inhibited the effects of potassium channel openers, without preventing the action of valinomycin. 6. In intact cardiomyocytes, diazoxide also induced mitochondrial depolarization and decreased mitochondrial Ca2+ content. These effects were inhibited by the mitochondrial ATP-sensitive K+ channel blocker 5-hydroxydecanoic acid. 7. Thus, potassium channel openers prevent mitochondrial Ca2+ overload by reducing the driving force for Ca2+ uptake and by activating cyclosporin-sensitive Ca2+ release. In this regard, modulators of an ATP-sensitive mitochondrial K+ conductance may contribute to the maintenance of mitochondrial Ca2+ homeostasis.  (+info)

Signal-dependent phosphorylation of the membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: nitrate elicits a superior anion ligand response compared to nitrite. (6/716)

The Nar two-component regulatory system, consisting of the dual sensor-transmitters NarX and NarQ and the dual response regulators NarL and NarP, controls the expression of various anaerobic respiratory pathway genes and fermentation pathway genes. Although both NarX and NarQ are known to detect the two environmental signals nitrate and nitrite, little is known regarding the sensitivity and selectivity of ligand for detection or activation of the sensor-transmitters. In this study, we have developed a sensitive anion-specific in vitro assay for NarX autophosphorylation by using Escherichia coli membranes highly enriched in the full-length NarX protein. In this ATP- and magnesium-dependent reaction, nitrate elicited a greater signal output (i.e., NarX autophosphorylation) than did nitrite. Nitrate stimulation occurred at concentrations as low as 5 microM, and the half-maximal level of NarX autophosphorylation occurred at approximately 35 microM nitrate. In contrast, nitrite-dependent stimulation was detected only at 500 microM, while 3.5 mM nitrite was needed to achieve half-maximal NarX autophosphorylation. Maximal nitrate- and nitrite-stimulated levels of NarX phosphorylation were five and two times, respectively, over the basal level of NarX autophosphorylation. The presence of Triton X-100 eliminated the nitrate-stimulated kinase activity and lowered the basal level of activity, suggesting that the membrane environment plays a crucial role in nitrate detection and/or regulation of kinase activity. These results provide in vitro evidence for the differential detection of dual signaling ligands by the NarX sensor-transmitter protein, which modulates the cytoplasmic NarX autokinase activity and phosphotransfer to NarL, the cognate response regulator.  (+info)

Depolarization-mediated inhibition of Ca(2+) entry in endothelial cells. (7/716)

The effect of extracellular Cl(-) in regulating ACh-induced Ca(2+) entry into freshly isolated rabbit aortic endothelial cells was studied using Ca(2+)-sensitive fluorescence microscopy and patch-clamp electrophysiology. After ACh caused transient Ca(2+) release in Ca(2+)-free medium, readdition of 3 mM Ca(2+) to the bath maintained Ca(2+) entry. Removal of extracellular Cl(-) abolished the plateau phase in Ca(2+) signal and inhibited divalent cation entry. However, in the presence of the K(+) ionophore valinomycin, removal of Cl(-) had no effect on the Ca(2+) plateau. Under current-clamp conditions, substitution of gluconate for Cl(-) induced membrane depolarization. Under voltage clamp, with CsCl in the pipette, ACh activated a slowly developing Cl(-) current, which was blocked by SITS and 5-nitro-2-(3-phenylpropylamino)benzoic acid. Varying the membrane potential by utilizing different extracellular K(+) concentrations in the presence of 5 microM valinomycin demonstrated that depolarization blocked ACh-stimulated Mn(2+) entry. These data suggest that ACh-induced Ca(2+) entry in freshly isolated endothelial cells requires the presence of extracellular Cl(-) to maintain a polarized membrane potential.  (+info)

Butyrate-induced apoptotic cascade in colonic carcinoma cells: modulation of the beta-catenin-Tcf pathway and concordance with effects of sulindac and trichostatin A but not curcumin. (8/716)

Short-chain fatty acids play a critical role in colonic homeostasis because they stimulate pathways of growth arrest, differentiation, and apoptosis. These effects have been well characterized in colonic cell lines in vitro. We investigated the role of beta-catenin-Tcf signaling in these responses to butyrate and other well-characterized inducers of apoptosis of colonic epithelial cells. Unlike wild-type APC, which down-regulates Tcf activity, butyrate, as well as sulindac and trichostatin A, all inducers of G0-G1 cell cycle arrest and apoptosis in the SW620 colonic carcinoma cell line, up-regulate Tcf activity. In contrast, structural analogues of butyrate that do not induce cell cycle arrest or apoptosis and curcumin, which stimulates G2-M arrest without inducing apoptosis, do not alter Tcf activity. Similar to the cell cycle arrest and apoptotic cascade induced by butyrate, the up-regulation of Tcf activity is dependent upon the presence of a mitochondrial membrane potential, unlike the APC-induced down-regulation, which is insensitive to collapse of the mitochondrial membrane potential. Moreover, the butyrate-induced increase in Tcf activity, which is reflected in an increase in beta-catenin-Tcf complex formation, is independent of the down-regulation caused by expression of wild-type APC. Thus, butyrate and wild-type APC have different and independent effects on beta-catenin-Tcf signaling. These data are consistent with other reports that suggest that the absence of wild-type APC, associated with the up-regulation of this signaling pathway, is linked to the probability of a colonic epithelial cell entering an apoptotic cascade.  (+info)