Proteins of the Rpf family: immune cell reactivity and vaccination efficacy against tuberculosis in mice. (33/649)

It was shown recently that Mycobacterium tuberculosis expresses five proteins that are homologous to Rpf (resuscitation promoting factor), which is secreted by growing cells of Micrococcus luteus. Rpf is required to resuscitate the growth of dormant Micrococcus luteus organisms, and its homologues may be involved in mycobacterial reactivation. Mycobacterial Rpf-like products are secreted proteins, which makes them candidates for recognition by the host immune system and anti-Rpf immune responses potentially protective against reactivated tuberculosis. Here we report that the Rpf protein itself and four out of five of its mycobacterial homologues, which were administered as subunit vaccines to C57BL/6 mice, are highly immunogenic. Rpf-like proteins elicit immunoglobulin G1 (IgG1) and IgG2a responses and T-cell proliferation and stimulate production of gamma interferon, interleukin-10 (IL-10), and IL-12 but not IL-4 or IL-5. Both humoral and T-cell responses against these antigens show a high degree of cross-reactivity. Vaccination of mice with Rpf-like proteins results in a significant level of protection against a subsequent high-dose challenge with virulent M. tuberculosis H37Rv, both in terms of survival times and mycobacterial multiplication in lungs and spleens.  (+info)

Immunization with a dicistronic plasmid expressing a truncated form of bovine herpesvirus-1 glycoprotein D and the amino-terminal subunit of glycoprotein B results in reduced gB-specific immune responses. (34/649)

As an approach to create a divalent DNA vaccine, a truncated secreted version of bovine herpesvirus-1 (BHV-1) glycoprotein D (tgD) and the amino-terminal subunit of glycoprotein B (gBb) were expressed from a dicistronic plasmid, designated pSLIAtgD-IRES-gBb. Intradermal immunization of mice with pSLIAtgD-IRES-gBb or a mixture of plasmids encoding tgD (pSLIAtgD) and gBb (pSLIAgBb) by needle injection or gene gun elicited strong tgD-specific immune responses. However, a significant reduction in gBb-specific immune responses was observed upon immunization of mice with pSLIAtgD-IRES-gBb or a mixture of pSLIAtgD and pSLIAgBb in comparison to immunization with pSLIAgBb alone. This reduction in gBb-specific immune responses induced by pSLIAtgD-IRES-gBb was due to production of low amounts of gBb from pSLIAtgD-IRES-gBb, inefficient processing and transport of gBb, and possibly competition for antigen-presenting cells by tgD and gBb. These results indicate that, although divalent plasmids may be used to express different antigens, the efficacy of vaccination with such plasmids may be influenced by the plasmid design and the characteristics of the expressed antigens.  (+info)

A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. (35/649)

A tumor-specific, bcr-abl-derived fusion peptide vaccine can be safely administered to patients with chronic myelogenous leukemia (CML) and can elicit a bcr-abl peptide-specific T-cell immune response. In the present phase 2 trial, 14 patients with CML in chronic phase were vaccinated with 6 fusion peptides mixed with Quillaja saponaria (QS-21). No significant toxic effects were observed. In 14 of 14 patients, delayed-type hypersensitivity (DTH) and/or CD4 proliferative responses developed after beginning vaccinations, and 11 of 14 patients showed interferon-gamma (IFN-gamma) release by CD4 enzyme-linked immunospot (ELISPOT) at one or more time points. These responses were CD4(+)CD45RO(+). A peptide-specific CD8(+) interferon-gamma ELISPOT was found in 4 patients. Four patients in hematologic remission had a decrease in Philadelphia chromosome (Ph) percentage (3 concurrently receiving interferon-alpha and 1 on imatinib mesylate), and 3 patients in molecular relapse after allogenic transplantation became transiently polymerase chain reaction (PCR) negative after vaccination; 2 of these patients received concurrent donor lymphocyte infusion (DLI). All 5 patients on IFN-alpha ultimately reached a complete cytogenetic remission. In conclusion, a tumor-specific bcr-abl breakpoint peptide-derived vaccine can be safely administered and can reliably elicit measurable peptide-specific CD4 immune responses, including in patients after bone marrow transplantation, on interferon, or on imatinib mesylate. A relationship between the clinical responses and vaccination cannot be determined from this trial.  (+info)

IL-10 mediates suppression of the CD8 T cell IFN-gamma response to a novel viral epitope in a primed host. (36/649)

Priming to Ag can inhibit subsequent induction of an immune response to a new epitope incorporated into that Ag, a phenomenon referred to as original antigenic sin. In this study, we show that prior immunity to a virus capsid can inhibit subsequent induction of the IFN-gamma effector T cell response to a novel CD8-restricted antigenic epitope associated with the virus capsid. Inhibition does not involve Ab to the virus capsid, as it is observed in animals lacking B cells. CD8-restricted virus-specific T cell responses are not required, as priming to virus without CTL induction is associated with inhibition. However, IL-10(-/-) mice, in contrast to IL-10(+/+) mice, generate CD8 T cell and Ab responses to novel epitopes incorporated into a virus capsid, even when priming to the capsid has resulted in high titer Ab to the capsid. Furthermore, capsid-primed mice, unable to mount a response to a novel epitope in the capsid protein, are nevertheless able to respond to the same novel epitope delivered independently of the capsid. Thus, inhibition of responsiveness to a novel epitope in a virus-primed animal is a consequence of secretion of IL-10 in response to presented Ag, which inhibits local generation of new CD8 IFN-gamma-secreting effector T cells. Induction of virus- or tumor Ag-specific CD8 effector T cells in the partially Ag-primed host may thus be facilitated by local neutralization of IL-10.  (+info)

Polyclonal CTL responses observed in melanoma patients vaccinated with dendritic cells pulsed with a MAGE-3.A1 peptide. (37/649)

Vaccination with mature, monocyte-derived dendritic cells (DC) pulsed with the MAGE-3(168-176) peptide, which is presented by HLA-A1, has been reported to induce tumor regressions and CTL in some advanced stage IV melanoma patients. We present here a precise evaluation of the level of some of these anti-MAGE-3.A1 CTL responses and an analysis of their clonal diversity. Blood lymphocytes were stimulated with the MAGE-3.A1 peptide under limiting dilution conditions and assayed with an A1/MAGE-3 tetramer. This was followed by the cloning of the tetramer-positive cells and by TCR sequence analysis of the CTL clones that lysed targets expressing MAGE-3.A1. We also used direct ex vivo tetramer staining of CD8 cells, sorting, and cloning of the positive cells. In three patients who showed regression of some of their metastases after vaccination, CTL responses were observed with frequencies ranging from 7 x 10(-6) to 9 x 10(-4) of CD8(+) blood T lymphocytes, representing an increase of 20- to 400-fold of the frequencies found before immunization. A fourth patient showed neither tumor regression nor an anti-MAGE-3.A1 CTL response. In each of the responses, several CTL clones were amplified. This polyclonality contrasts with the monoclonality of the CTL responses observed in patients vaccinated with MAGE-3.A1 peptide or with an ALVAC recombinant virus coding for this antigenic peptide.  (+info)

Monoclonal anti-MAGE-3 CTL responses in melanoma patients displaying tumor regression after vaccination with a recombinant canarypox virus. (38/649)

We have analyzed the T cell responses of HLA-A1 metastatic melanoma patients with detectable disease, following vaccination with a recombinant ALVAC virus, which bears short MAGE-1 and MAGE-3 sequences coding for antigenic peptides presented by HLA-A1. To evaluate the anti-MAGE CTL responses, we resorted to antigenic stimulation of blood lymphocytes under limiting dilution conditions, followed by tetramer analysis and cloning of the tetramer-positive cells. The clones were tested for their specific lytic ability and their TCR sequences were obtained. Four patients who showed tumor regression were analyzed, and an anti-MAGE-3.A1 CTL response was observed in three of these patients. Postvaccination frequencies of anti-MAGE-3.A1 CTL were 3 x 10(-6), 3 x 10(-3), and 3 x 10(-7) of the blood CD8 T cells, respectively. These three responses were monoclonal. No anti-MAGE-1.A1 CTL response was observed. These results indicate that, like peptide immunization, ALVAC immunization produces monoclonal responses. They also suggest that low-level antivaccine CTL responses can initiate a tumor regression process. Taken together, our analysis of anti-MAGE-3.A1 T cell responses following peptide or ALVAC vaccination shows a degree of correlation between CTL response and tumor regression, but firm conclusions will require larger numbers.  (+info)

Antibodies to keyhole limpet hemocyanin cross-react with an epitope on the polysaccharide capsule of Cryptococcus neoformans and other carbohydrates: implications for vaccine development. (39/649)

Cryptococcus neoformans causes a life-threatening meningoencephalitis in AIDS patients. Mice immunized with a glycoconjugate vaccine composed of the glucuronoxylomannan (GXM) component of the cryptococcal capsular polysaccharide conjugated to tetanus toxoid produce Abs that can be either protective or nonprotective. Because nonprotective Abs block the efficacy of protective Abs, an effective vaccine must focus the Ab response on a protective epitope. Mice immunized with peptide mimetics of GXM conjugated to keyhole limpet hemocyanin (KLH) with glutaraldehyde developed Abs to GXM. However, control peptides P315 and P24 conjugated to KLH also elicited Abs to GXM. GXM-binding Abs from mice immunized with P315-KLH were inhibited by KLH treated with glutaraldehyde (KLH-g), but not by P315. Furthermore, KLH-g inhibited binding of GXM by serum of mice immunized with GXM-TT, indicating that glutaraldehyde treatment of KLH reveals an epitope(s) that cross-reacts with GXM. Vaccination with KLH-g or unmodified KLH elicited Abs to GXM, but did not confer protection against C. neoformans, suggesting the cross-reactive epitope on KLH was not protective. This was supported by the finding that 4H3, a nonprotective mAb, cross-reacted strongly with KLH-g. Sera from mice immunized with either native KLH or KLH-g cross-reacted with several other carbohydrate Ags, many of which have been conjugated to KLH for vaccine development. This study illustrates how mAbs can be used to determine the efficacy of potential vaccines, in addition to describing the complexity of using KLH and glutaraldehyde in the development of vaccines to carbohydrate Ags.  (+info)

Simultaneous CD8+ T cell responses to multiple tumor antigen epitopes in a multipeptide melanoma vaccine. (40/649)

The recent identification and molecular characterization of tumor-associated antigens recognized by tumor-reactive CD8+ T lymphocytes has led to the development of antigen-specific immunotherapy of cancer. Among other approaches, clinical studies have been initiated to assess the in vivo immunogenicity of tumor antigen-derived peptides in cancer patients. In this study, we have analyzed the CD8+ T cell response of an ocular melanoma patient to a vaccine composed of four different tumor antigen-derived peptides administered simultaneously in incomplete Freund's adjuvant (IFA). Peptide NY-ESO-1(157-165) was remarkably immunogenic and induced a CD8+ T cell response detectable ex vivo at an early time point of the vaccination protocol. A CD8+ T cell response to the peptide analog Melan-A(26-35 A27L) was also detectable ex vivo at a later time point, whereas CD8+ T cells specific for peptide tyrosinase(368-376) were detected only after in vitro peptide stimulation. No detectable CD8+ T cell response to peptide gp100(457-466) was observed. Vaccine-induced CD8+ T cell responses declined rapidly after the initial response but increased again after further peptide injections. In addition, tumor antigen-specific CD8+ T cells were isolated from a vaccine injection site biopsy sample. Importantly, vaccine-induced CD8+ T cells specifically lysed tumor cells expressing the corresponding antigen. Together, these data demonstrate that simultaneous immunization with multiple tumor antigen-derived peptides can result in the elicitation of multiepitope-directed CD8+ T cell responses that are reactive against antigen-expressing tumors and able to infiltrate antigen-containing peripheral sites.  (+info)