Immunoglobulin-specific radioimmunoprecipitation assays for quantitation of nasal secretory antibodies to hemagglutinin of type A influenza viruses. (1/2149)

Radioimmunoprecipitation (RIP) assays were developed to selectively quantitate class-specific antibodies to purified hemagglutinins (HA) of type A influenza virus in nasal secretions. Rabbit anti-human secretory piece of immunoglobulin A (IgA) and rabbit anti-human IgG were used as second antibodies. A third antibody, goat anti-rabbit IgG, was incorporated into the system to separate immune complexes formed between iodinated HA, nasal wash test specimen, and second antibody. The utilization of this reagent avoided the need for large quantities of IgA and IgG antibody-negative carrier secretions. Nasal was specimens obtained from 14 adults immunized with an inactivated type A influenza virus vaccine were evaluated by RIP and viral neutralization assays. Significant homologous postvaccination secretory IgA and IgG antibody levels were demonstrable in 13 (93%) of individuals by RIP, whereas only 5 (36%) exhibited rises by viral neutralization tests. Moreover, the geometric mean IgA and IgG antibody levels were at least 20- and 37-fold greater than the neutralizing antibody titer. The pattern of heterologous immunoglobulin-specific antibody responses tended to be similar to those observed with the homologous HA subunit.  (+info)

Expanded safety and immunogenicity of a bivalent, oral, attenuated cholera vaccine, CVD 103-HgR plus CVD 111, in United States military personnel stationed in Panama. (2/2149)

To provide optimum protection against classical and El Tor biotypes of Vibrio cholerae O1, a single-dose, oral cholera vaccine was developed by combining two live, attenuated vaccine strains, CVD 103-HgR (classical, Inaba) and CVD 111 (El Tor, Ogawa). The vaccines were formulated in a double-chamber sachet; one chamber contained lyophilized bacteria, and the other contained buffer. A total of 170 partially-immune American soldiers stationed in Panama received one of the following five formulations: (a) CVD 103-HgR at 10(8) CFU plus CVD 111 at 10(7) CFU, (b) CVD 103-HgR at 10(8) CFU plus CVD 111 at 10(6) CFU, (c) CVD 103-HgR alone at 10(8) CFU, (d) CVD 111 alone at 10(7) CFU, or (e) inactivated Escherichia coli placebo. Among those who received CVD 111 at the high or low dose either alone or in combination with CVD 103-HgR, 8 of 103 had diarrhea, defined as three or more liquid stools. None of the 32 volunteers who received CVD 103-HgR alone or the 35 placebo recipients had diarrhea. CVD 111 was detected in the stools of 46% of the 103 volunteers who received it. About 65% of all persons who received CVD 103-HgR either alone or in combination had a fourfold rise in Inaba vibriocidal titers. The postvaccination geometric mean titers were comparable among groups, ranging from 450 to 550. Ogawa vibriocidal titers were about twice as high in persons who received CVD 111 as in those who received CVD 103-HgR alone (600 versus 300). The addition of CVD 111 improved the overall seroconversion rate and doubled the serum Ogawa vibriocidal titers, suggesting that the combination of an El Tor and a classical cholera strain is desirable. While CVD 111 was previously found to be well tolerated in semiimmune Peruvians, the adverse effects observed in this study indicate that this strain requires further attenuation before it can be safely used in nonimmune populations.  (+info)

Long-lasting protection by live attenuated simian immunodeficiency virus in cynomolgus monkeys: no detection of reactivation after stimulation with a recall antigen. (3/2149)

The infection of cynomolgus monkeys with an attenuated simian immunodeficiency virus (SIV) (C8) carrying a deletion in the nef gene results in a persistent infection associated with an extremely low viral burden in peripheral blood mononuclear cells. The aim of this study was to determine (1) the breadth of the protection after repeated challenges of monkeys with SIV homologous strains of different pathogenicity, (2) the genotypic stability of the live virus vaccine, (3) whether the protection might depend on cellular resistance to superinfection, and (4) whether immunogenic stimuli such as recall antigens could reactivate the replication of the C8 virus. To address these goals, the monkeys were challenged at 40 weeks after C8 infection with 50 MID50 of cloned SIVmac251, BK28 grown on macaque cells. They were protected as indicated by several criteria, including virus isolation, anamnestic serological responses, and viral diagnostic PCR. At 92 weeks after the first challenge, unfractionated peripheral blood mononuclear cells from protected monkeys were susceptible to the in vitro infection with SIVmac32H, spl. At 143 weeks after C8 infection, the four protected monkeys were rechallenged with 50 MID50 of the pathogenic SIVmac32H, spl grown on macaque cells. Once again, they were protected. The C8 virus remained genotypically stable, and depletion of CD4(+) cells was not observed during approximately 3 years of follow-up. In contrast, it was found that the infection with SIVmac32H, spl induced CD4(+) cell depletion in three of three control monkeys. Of importance, stimulation with tetanus toxoid, although capable of inducing specific humoral and T cell proliferative responses, failed to induce a detectable reactivation of C8 virus.  (+info)

Detection of intracellular antigen-specific cytokines in human T cell populations. (4/2149)

Determination of antigen-specific cytokine responses of T lymphocytes after vaccination is made difficult by the low frequency of responder cells. In order to detect these responses, the profile of intracellular cytokines was analyzed using flow cytometry after antigenic expansion. Peripheral blood mononuclear cells were stimulated with antigens for 5 days, further expanded with interleukin (IL)-2, and then restimulated on day 10. Cytokine production was detected by intracellular staining with monoclonal antibodies after saponin-based permeabilization. Influenza expansion resulted in specific interferon-gamma (IFN-gamma) production of 6%-20%, with less IL-4 production (0%-2%). Tetanus toxoid resulted in even greater production. IL-4 and IFN-gamma were produced mainly by memory cells of the CD45RO+ phenotype. IFN-gamma production was contributed by both CD4 and CD8 populations. These methods were then applied to a clinical trial of a candidate human immunodeficiency virus type 1 vaccine. Antigen-specific increases in IFN-gamma were measured, which corresponded to antibody production, lymphoproliferation, and skin testing.  (+info)

Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. (5/2149)

Recombinant reassortment technology was used to prepare H5N1 influenza vaccine strains containing a modified hemagglutinin (HA) gene and neuraminidase gene from the A/Hong Kong/156/97 and A/Hong Kong/483/97 isolates and the internal genes from the attenuated cold-adapted A/Ann Arbor/6/60 influenza virus strain. The HA cleavage site (HA1/HA2) of each H5N1 isolate was modified to resemble that of "low-pathogenic" avian strains. Five of 6 basic amino acids at the cleavage site were deleted, and a threonine was added upstream of the remaining arginine. The H5 HA cleavage site modification resulted in the expected trypsin-dependent phenotype without altering the antigenic character of the H5 HA molecule. The temperature-sensitive and cold-adapted phenotype of the attenuated parent virus was maintained in the recombinant strains, and they grew to 108.5-9.4 EID50/mL in eggs. Both H5N1 vaccine virus strains were safe and immunogenic in ferrets and protected chickens against wild-type H5N1 virus challenge.  (+info)

Attenuated vesicular stomatitis viruses as vaccine vectors. (6/2149)

We showed previously that a single intranasal vaccination of mice with a recombinant vesicular stomatitis virus (VSV) expressing an influenza virus hemagglutinin (HA) protein provided complete protection from lethal challenge with influenza virus (A. Roberts, E. Kretzschmar, A. S. Perkins, J. Forman, R. Price, L. Buonocore, Y. Kawaoka, and J. K. Rose, J. Virol. 72:4704-4711, 1998). Because some pathogenesis was associated with the vector itself, in the present study we generated new VSV vectors expressing HA which are completely attenuated for pathogenesis in the mouse model. The first vector has a truncation of the cytoplasmic domain of the VSV G protein and expresses influenza virus HA (CT1-HA). This nonpathogenic vector provides complete protection from lethal influenza virus challenge after intranasal administration. A second vector with VSV G deleted and expressing HA (DeltaG-HA) is also protective and nonpathogenic and has the advantage of not inducing neutralizing antibodies to the vector itself.  (+info)

Protection against establishment of retroviral persistence by vaccination with a live attenuated virus. (7/2149)

Many human viruses not only cause acute diseases but also establish persistent infections. Such persistent viruses can cause chronic diseases or can reactivate to cause acute diseases in AIDS patients or patients receiving immunosuppressive therapies. While the prevention of persistent infections is an important consideration in the design of modern vaccines, surprisingly little is known about this aspect of protection. In the current study, we tested the feasibility of vaccine prevention of retroviral persistence by using a Friend virus model that we recently developed. In this model, persistent virus can be detected at very low levels by immunosuppressing the host to reactivate virus or by transferring persistently infected spleen cells into highly susceptible mice. Two vaccines were analyzed, a recombinant vaccinia virus vector expressing Friend virus envelope protein and a live attenuated Friend virus. Both vaccines reduced pathogenic virus loads to levels undetectable by infectious center assays. However, only the live, attenuated vaccine prevented immunosuppression-induced reactivation of persistent virus. Thus, even very low levels of persistent Friend virus posed a significant threat during immunosuppression. Our results demonstrate that vaccine protection against establishment of retroviral persistence is attainable.  (+info)

Immunization with a live, attenuated simian immunodeficiency virus vaccine leads to restriction of viral diversity in Rhesus macaques not protected from pathogenic challenge. (8/2149)

Rhesus macaques immunized with simian immunodeficiency virus SIVmac239Deltanef but not protected from SIVmac251 challenge were studied to determine the genetic and biological characteristics of the breakthrough viruses. Assessment of SIV genetic diversity (env V1-V2) revealed a reduction in the number of viral species in the immunized, unprotected macaques, compared to the number in nonimmunized controls. However, no evidence for selection of a specific V1-V2 genotype was observed, and biologically cloned isolates from the animals with breakthrough virus were similar with respect to replication kinetics and coreceptor use in vitro.  (+info)