Organization of genes for tetrapyrrole biosynthesis in gram--positive bacteria. (1/72)

Clusters of genes encoding enzymes for tetrapyrrole biosynthesis were cloned from Bacillus sphaericus, Bacillus stearothermophilus, Brevibacillus brevis and Paenibacillus macerans. The sequences of all hemX genes found, and of a 6.3 kbp hem gene cluster from P. macerans, were determined. The structure of the hem gene clusters was compared to that of other Gram-positive bacteria. The Bacillus and Brevibacillus species have a conserved organization of the genes hemAXCDBL, required for biosynthesis of uroporphyrinogen III (UroIII) from glutamyl-tRNA. In P. macerans, the hem genes for UroIII synthesis are also closely linked but their organization is different: there is no hemX gene and the gene cluster also contains genes, cysG8 and cysG(A)-hemD, encoding the enzymes required for synthesis of sirohaem from UroIII. Bacillus subtilis contains genes for three proteins, NasF, YInD and YInF, with sequence similarity to Escherichia coli CysG, which is a multi-functional protein catalysing sirohaem synthesis from UroIII. It is shown that YInF is required for sirohaem synthesis and probably catalyses the precorrin-2 to sirohaem conversion. YInD probably catalyses precorrin-2 synthesis from UroIII and NasF seems to be specific for nitrite reduction.  (+info)

Arsenite alters heme synthesis in long-term cultures of adult rat hepatocytes. (2/72)

Arsenite (As[III]) effects on the intermediate steps of heme biosynthesis were studied in adult rat hepatocytes seeded on a feeder layer of 3T3 cells (3T3-hepatocytes) and maintained for 2 weeks with culture medium non-supplemented or supplemented with 150 microM 5-aminolevulinic acid (ALA). The activities of the intracellular enzymes porphobilinogen deaminase (PBG-D), uroporphyrinogen III synthase (UROIII-S), and uroporphyrinogen III decarboxylase (URO-D), and the intermediary uroporphyrins (URO), coproporphyrins (COPRO) and protoporphyrin IX (PROTO) were determined in these cultures. The 3T3-hepatocytes maintained the activities of PBG-D, UROIII-S and URO-D during 2 weeks and ALA addition to the culture medium increased PBG-D (2-3-fold) and UROIII-S (50%) activities and porphyrin production, which accumulated as PROTO. Exposure to 3.9 microM As(III) inhibited UROIII-S activity (down to 34%), and PBG-D and URO-D activities to a lower extent; these effects were magnified by ALA supplementation. As(III) also produced an intracellular accumulation and a decreased excretion of PROTO, and a 31% reduction of the COPRO/URO ratio in the culture medium. Additionally, As(III) caused cytoplasmic vacuolization and lipid accumulation. Our results show that As(III) exposure selectively inhibits several intermediary enzymes of heme metabolism and affects the intra- and extracellular content of porphyrins and their ratio in the culture medium. They also confirm that 3T3-hepatocytes are a suitable in vitro model to study hepatic heme metabolism and its alterations by hepatotoxic chemicals.  (+info)

Porphyria variegata and porphyria cutanea tarda in siblings: chemical and genetic aspects. (3/72)

A woman aged 54 was studied because of a severe acute porphyric (neurologic) relapse with clinical and chemical findings characteristic of porphyria variegata. During a family survey, her brother, aged 59, was found to have chemical abnormalities typical of porphyria cutanea tarda, without suggestion of neurologic manifestations. He had mild skin changes compatible with either of these forms of porphyria. The sister exhibited the protocoproporphyria of porphyria variegata, together with a large amount of fecal "x" porphyrin fraction, without demonstrable isocoproporphyrins. The brother had a uro-isocopro-type of porphyria in accord with the diagnosis of porphyria cutanea tarda, and quite at variance with the sister's findings. This occurrence of porphyria variegata and porphyria cutanea tarda in siblings is thus far unique. Certain hypotheses are considered in respect to genetic aspects of the differing prophyrias in this sibling pair.  (+info)

Uroporphyrin-accumulating mutant of Escherichia coli K-12. (4/72)

An uroporphyrin III-accumulating mutant of Escherichia coli K-12 was isolated by neomycin. The mutant, designated SASQ85, was catalase deficient and formed dwarf colonies on usual media. Comparative extraction by cyclohexanone and ethyl acetate showed the superiority of the former for the extraction of the uroporphyrin accumulated by the mutant. Cell-free extracts of SASQ85 were able to convert 5-aminolevulinic acid and porphobilinogen to uroporphyrinogen, but not to copro- or protoporphyrinogen. Under the same conditions cell-free extracts of the parent strain converted 5-aminolevulinic to uroporphyringen, coproporphyrinogen, and protoporphyrinogen. The conversion of porphobilinogen to uroporphyrinogen by cell-free extracts of the mutant was inhibited 98 and 95%, respectively, by p-chloromercuribenzoate and p-chloromercuriphenyl-sulfonate, indicating the presence of uroporphyrinogen synthetase activity in the extracts. Spontaneous transformation of porphobilinogen to uroporphyrin was not detectable under the experimental conditions used [4 h at 37 C in tris(hydroxymethyl)aminomethane-potassium phosphate buffer, pH 8.2]. The results indicate a deficient uroporphyrinogen decarboxylase activity of SASQ85 which is thus the first uroporphyrinogen decarboxylase-deficient mutant isolated in E. coli K-12. Mapping of the corresponding locus by P1-mediated transduction revealed the frequent joint transduction of hemE and thiA markers (frequency of co-transduction, 41 to 44%). The results of the genetic analysis suggest the gene order rif, hemE, thiA, metA; however, they do not totally exclude the gene order rif, thiA, hemE, metA.  (+info)

Crystal structure of precorrin-8x methyl mutase. (5/72)

BACKGROUND: The crystal structure of precorrin-8x methyl mutase (CobH), an enzyme of the aerobic pathway to vitamin B12, provides evidence that the mechanism for methyl migration can plausibly be regarded as an allowed [1,5]-sigmatropic shift of a methyl group from C-11 to C-12 at the C ring of precorrin-8x to afford hydrogenobyrinic acid. RESULTS: The dimeric structure of CobH creates a set of shared active sites that readily discriminate between different tautomers of precorrin-8x and select a discrete tautomer for sigmatropic rearrangement. The active site contains a strictly conserved histidine residue close to the site of methyl migration in ring C of the substrate. CONCLUSION: Analysis of the structure with bound product suggests that the [1,5]-sigmatropic shift proceeds by protonation of the ring C nitrogen, leading to subsequent methyl migration.  (+info)

Decarboxylation of uroporphyrin by heating at atmospheric pressure. (6/72)

Free uroporphyrin is decarboxylated by heating in the air to 150--200 degrees C. Complete decarboxylation occurs after heating to 200 degrees C for 5 min, with a yield of 66--75%. Heptacarboxylic porphyrin can be prepared with a yield of 40% by heating uroporphyrin to 150 degrees C for 60 min, and hexacarboxylic porphyrin with a yield of about 20% by heating to 150 degrees C for 2h.  (+info)

Clinical and biochemical characteristics and genotype-phenotype correlation in Finnish variegate porphyria patients. (7/72)

Variegate porphyria (VP) is an inherited metabolic disease resulting from the partial deficiency of protoporphyrinogen oxidase, the penultimate enzyme in the heme biosynthetic pathway. We have evaluated the clinical and biochemical outcome of 103 Finnish VP patients diagnosed between 1966 and 2001. Fifty-two per cent of patients had experienced clinical symptoms: 40% had photosensitivity, 27% acute attacks and 14% both manifestations. The proportion of patients with acute attacks has decreased dramatically from 38 to 14% in patients diagnosed before and after 1980, whereas the prevalence of skin symptoms had decreased only subtly from 45 to 34%. We have studied the correlation between PPOX genotype and clinical outcome of 90 patients with the three most common Finnish mutations I12T, R152C and 338G-->C. The patients with the I12T mutation experienced no photosensitivity and acute attacks were rare (8%). Therefore, the occurrence of photosensitivity was lower in the I12T group compared to the R152C group (P=0.001), whereas no significant differences between the R152C and 338G-->C groups could be observed. Biochemical abnormalities were significantly milder suggesting a milder form of the disease in patients with the I12T mutation. In all VP patients, normal excretion of protoporphyrin in faeces in adulthood predicted freedom from both skin symptoms and acute attacks. The most valuable test predicting an increased risk of symptoms was urinary coproporphyrin, but only a substantially increased excretion exceeding 1,000 nmol/day was associated with an increased risk of both skin symptoms and acute attacks. All patients with an excretion of more than 1,000 nmol/day experienced either skin symptoms, acute attacks, or both.  (+info)

Identification and functional analysis of enzymes required for precorrin-2 dehydrogenation and metal ion insertion in the biosynthesis of sirohaem and cobalamin in Bacillus megaterium. (8/72)

In Bacillus megaterium, the hemAXBCDL genes were isolated and were found to be highly similar to the genes from Bacillus subtilis that are required for the conversion of glutamyl-tRNA into uroporphyrinogen III. Overproduction and purification of HemC (porphobilinogen deaminase) and -D (uroporphyrinogen III synthase) allowed these enzymes to be used for the in vitro synthesis of uroporphyrinogen III from porphobilinogen. A second smaller cluster of three genes (termed sirABC) was also isolated and found to encode the enzymes that catalyse the transformation of uroporphyrinogen III into sirohaem on the basis of their ability to complement a defined Escherichia coli (cysG) mutant. The functions of SirC and -B were investigated by direct enzyme assay, where SirC was found to act as a precorrin-2 dehydrogenase, generating sirohydrochlorin, and SirB was found to act as a ferrochelatase responsible for the final step in sirohaem synthesis. CbiX, a protein found encoded within the main B. megaterium cobalamin biosynthetic operon, shares a high degree of similarity with SirB and acts as the cobaltochelatase associated with cobalamin biosynthesis by inserting cobalt into sirohydrochlorin. CbiX contains an unusual histidine-rich region in the C-terminal portion of the protein, which was not found to be essential in the chelation process. Sequence alignments suggest that SirB and CbiX share a similar active site to the cobaltochelatase, CbiK, from Salmonella enterica.  (+info)