Binding of human neutrophils to cell-surface anchored Tamm-Horsfall glycoprotein in tubulointerstitial nephritis. (1/196)

BACKGROUND: Human Tamm-Horsfall glycoprotein (T-H) is a glycosylphosphatidylinositol-anchored protein exposed at the surface of distal nephron cells, and urinary T-H is the released soluble counterpart. The latter has been implicated in tubulointerstitial nephritis, and the proinflammatory potential has been related to its ability to bind in vitro human neutrophils (PMNs). We have examined the conditions required for the binding of neutrophils to cell-surface anchored T-H and the consequent effects. METHODS: A HeLa cell-line derivative permanently transformed with human T-H cDNA and expressing T-H at the cell surface was used throughout the study. The adhesion of PMNs to cells expressing T-H was analyzed by immunofluorescence microscopy before and after the opsonization of cells with anti-T-H antibodies. The oxidative burst induced by adhesion of PMNs to the cells was determined by the activation of myeloperoxidase. Quantitative and qualitative changes in the release of T-H under the adhesion of activated PMNs were determined by dot-blot and Western blot analysis. RESULTS: No binding of neutrophils to cell-surface-anchored T-H was observed. On the contrary, the opsonization of cells with anti-T-H antibodies resulted in a dramatic adhesion of neutrophils. Such an adhesion induced the oxidative burst of PMNs and a large increment in the release of T-H, as well as the release of the slightly faster migrating T-H form, which is normally retained intracellularly. CONCLUSIONS: These results support the notion that, after the autoimmune response, the adhesion of neutrophils to cell-surface T-H contributes to the pathogenesis of tubulointerstitial nephritis, favoring a further accumulation of T-H in the interstitium and inducing the loss of cell integrity via reactive oxygen metabolites generated by activated neutrophils.  (+info)

Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys. (2/196)

In chronic renal failure (CRF), reduction in renal mass leads to an increase in the filtration rates of the remaining nephrons and increased excretion of sodium per nephron. To address the mechanisms involved in the increased sodium excretion, we determined the total kidney levels and the densities per nephron of the major renal NaCl transporters in rats with experimental CRF. Two weeks after 5/6 nephrectomy (reducing the total number of nephrons to approximately 24 +/- 8%), the rats were azotemic and displayed increased Na excretion. Semiquantitative immunoblotting revealed significant reduction in the total kidney levels of the proximal tubule Na transporters NHE-3 (48% of control), NaPi-II (13%), and Na-K-ATPase (30%). However, the densities per nephron of NHE-3, NaPi-II, and Na-K-ATPase were not significantly altered in remnant kidneys, despite the extensive hypertrophy of remaining nephrons. Immunocytochemistry confirmed the reduction in NHE-3 and Na-K-ATPase labeling densities in the proximal tubule. In contrast, there was no significant reduction in the total kidney levels of the thick ascending limb and distal convoluted tubule NaCl transporters BSC-1 and TSC, respectively. This corresponded to a 3.6 and 2.5-fold increase in densities per nephron, respectively (confirmed by immunocytochemistry). In conclusion, in this rat CRF model: 1) increased fractional sodium excretion is associated with altered expression of proximal tubule Na transporter expression (NHE-3, NaPi-II, and Na-K-ATPase), consistent with glomerulotubular imbalance in the face of increased single-nephron glomerular filtration rate; and 2) compensatory increases in BSC-1 and TSC expression per nephron occur in distal segments.  (+info)

Antibodies to Tamm-Horsfall protein in endemic nephropathy. (3/196)

BACKGROUND: The aim of the study was to investigate the possible role of antibodies to Tamm-Horsfall protein (anti-THP) in the early diagnosis of endemic nephropathy (EN). METHODS: Anti-THP (IgA, IgM, IgG classes) antibodies were determined by direct ELISA in a random sample of 159 subjects from the endemic village of Kaniza who were divided into four groups according to the WHO criteria, i.e., 'diseased', 'suspect', 'at risk', and 'others'. These groups were compared to subjects from the non-endemic village of Klakar and healthy subjects from Zagreb. RESULTS: No differences for all the classes of antibody were observed among the groups of subjects from the endemic village of Kaniza (P>0.05) or between these subjects and those from the non-endemic village of Klakar (P>0.05). The values of IgM anti-THP antibodies exceeded those of the IgA and IgG classes in all groups of subjects (P<0.05). The values for all three classes of antibodies were higher in the rural than the urban population (P<0. 05). CONCLUSION: Determination of anti-THP antibodies was not found to be useful in the early diagnosis of endemic nephropathy. The results suggest that most of the anti-THP antibodies are 'natural' and/or cross reactive. The highest values observed in the rural population could probably be explained by exposure to some ubiquitous antigen or more likely they are consequences of fever.  (+info)

Citrate determines calcium oxalate crystallization kinetics and crystal morphology-studies in the presence of Tamm-Horsfall protein of a healthy subject and a severely recurrent calcium stone former. (4/196)

BACKGROUND: The aim of this study was to measure the effects of normal (nTHP) and abnormal stone former Tamm-Horsfall protein (SF-THP) on calcium oxalate (CaOx) nucleation and aggregation as well as on crystal morphology, in presence or absence of citrate. METHODS: Nucleation and aggregation of CaOx crystals from a supersaturated, stirred solution (200 mM NaCl, 10 mM Na-acetate, pH 5.70, 5 mM Ca and 0.5 mM Ox) were studied by spectrophotometric time-course measurements of OD at 620 nm (OD(620)). Measured parameters were induction time t(I) (time to induce formation of detectable particles), S(N), (slope of increase of OD(620), mainly due to crystal nucleation), and S(A), (slope of decrease of OD(620) after equilibrium has been reached, due to crystal aggregation). Effects of citrate, nTHP and SF-THP on these parameters were measured, and scanning electron microscopy (SEM) was performed. RESULTS: At 1.5, 2.5 and 3.5 mM, citrate increased t(I) and inhibited crystal nucleation (by 78-87%) as well as aggregation (by 63-70%), and smaller CaOx crystals (length/width ratio 1.7+/-0.1) than under standard conditions (length/width 3.9+/-0.5) were visible (P<0.001). Normal THP at 30 and 40 mg/l inhibited crystal nucleation and, more strongly, aggregation (inhibition 76-81%). SEM revealed a decrease in length/width ratio to 2.6+/-0.4 (P=0.051 vs standard conditions) and less aggregation than without nTHP. At all concentrations tested, SF-THP reduced t(I) (P=0.0001 vs standard conditions) and promoted aggregation (inhibition -48 to -33%); crystals were elongated with a length/width ratio of 4.3+/-0.6 (P<0. 05 vs nTHP). When simultaneously present with nTHP, citrate enhanced the inhibitory effects of nTHP, producing the smallest (length/width 1.5+/-0.1) and least aggregated crystals. Finally, 3.5 mM citrate turned promotory SF-THP into a crystallization inhibitor with abundant small and clustered, but not aggregated crystals. CONCLUSION: Citrate appears to be the main determinant of CaOx crystallization rates and crystal morphology in the presence of nTHP as well as SF-THP. Its effects appear to predominate over those of THP, since even promotory SF-THP is turned into a crystallization inhibitor in the presence of citrate. This re-emphasizes at a morphological level what has been concluded from functional as well from clinical studies, namely that citrate is needed in urine at equimolar concentrations to calcium in order to prevent the formation of large crystal aggregates in presence of abnormal THP.  (+info)

Pregnancy-associated changes in the glycosylation of tamm-horsfall glycoprotein. Expression of sialyl Lewis(x) sequences on core 2 type O-glycans derived from uromodulin. (5/196)

Tamm-Horsfall glycoprotein (THP) is a major glycoprotein associated with human urine that binds pro-inflammatory cytokines and also inhibits in vitro T cell proliferation induced by specific antigens. THP derived from human pregnancy urine (designated uromodulin) has previously been shown to be 13-fold more effective as an inhibitor of antigen-induced T cell proliferation than THP obtained from other sources. Structural analysis of human THP and uromodulin has for the first time revealed that these glycoproteins are O-glycosylated. THP from nonpregnant females and males expresses primarily core 1 type O-glycans terminated with either sialic acid or fucose but not the sialyl Lewis(x) epitope. By contrast, the O-glycans linked to uromodulin include unusual core 2 type glycans terminated with one, two, or three sialyl Lewis(x) sequences. The specific association of these unusual carbohydrate sequences with uromodulin could explain its enhanced immunomodulatory effects compared with THP obtained from males and nonpregnant females. Analysis of THP from one of the pregnant females 2 months postpartum showed a reversion of the O-glycan profile to that found for a non-pregnant female. These data suggest that the glycosylation state of uromodulin could be under the regulation of steroidal hormones produced during pregnancy. The significant physiological implications of these observations are discussed.  (+info)

Familial juvenile hyperuricemic nephropathy: localization of the gene on chromosome 16p11.2-and evidence for genetic heterogeneity. (6/196)

Familial juvenile hyperuricemic nephropathy (FJHN), is an autosomal dominant renal disease characterized by juvenile onset of hyperuricemia, gouty arthritis, and progressive renal failure at an early age. Using a genomewide linkage analysis in three Czech affected families, we have identified, on chromosome 16p11.2, a locus for FJHN and have found evidence for genetic heterogeneity and reduced penetrance of the disease. The maximum two-point LOD score calculated with allowance for heterogeneity (HLOD) was 4.70, obtained at recombination fraction 0, with marker D16S3036; multipoint linkage analysis yielded a maximum HLOD score of 4.76 at the same location. Haplotype analysis defined a 10-cM candidate region between flanking markers D16S501 and D16S3113, exhibiting crossover events with the disease locus. The candidate interval contains several genes expressed in the kidney, two of which-uromodulin and NADP-regulated thyroid-hormone-binding protein-represent promising candidates for further analysis.  (+info)

Determinants of urinary excretion of Tamm-Horsfall protein in non-selected kidney stone formers and healthy subjects. (7/196)

BACKGROUND: The aim of the study was to measure urinary excretion of Tamm-Horsfall protein (THP), an important inhibitor of crystallization, and to identify possible determinants of urinary THP excretion in non-selected kidney stone formers (SF) and healthy subjects (C). METHODS: By means of a commercially available ELISA (Pharmacia and Upjohn/Elias, Germany), we measured THP in 24-h urines of 104 SF (74 males/30 females, age 16-74 years) who had formed 8.7+/-2.4 stones (range 1-240), and of 71 C (41 males/30 females, age 22-62 years). Types of stones formed by SF were 88 calcium, eight uric acid, six infection, and two cystine. All values are means+/-SE. RESULTS: The normal range (5th to 95th percentile) of U(THP)xV was 9.3-35.0 mg/day in males and 9.0-36.3 mg/day in females respectively. Mean U(THP)xV was 21.3+/-1.2 mg/day (range 3. 4-51.6) in male and 15.2+/-1.6 mg/day (range 1.8-32.3) in female SF (P=0.008 vs male SF). Since U(THP)xV was positively correlated with C(Crea) (r=0.312, P=0.001) in SF as well as with U(Crea)xV (r=0.346, P=0.0001) and with body surface (r=0.271, P=0.0003) in all study subjects, mean THP/Crea (mg/mmol) was used for all further calculations. Overall, THP/Crea was lower in SF (1.42+/-0.07 vs 1. 68+/-0.08, P:=0.015), mainly due to increased THP/Crea in female C (2.08+/-0.11, P=0.0036 vs female SF, P=0.0001 vs male C and vs male calcium SF), which also explains decreased THP/Crea values in calcium SF (1.46+/-0.08, P=0.041 vs C). In addition, THP/Crea was reduced in uric acid SF (1.11+/-0.21, P=0.049 vs C). Whereas THP/Crea was not related to age, urine volume, intake of dairy calcium, or urinary markers of protein intake, either in C or in SF, it correlated significantly with urinary Citrate/Crea, both in C (r=0.523, P=0.0001) and in SF (r=0.221, P=0.025). In C only, but not in SF, THP/Crea was correlated with urinary Calcium/Crea (r=0. 572, P=0.0001) and with Oxalate/Crea (r=0.274, P=0.022). CONCLUSIONS: Both in C and SF, urinary THP excretion is related to body size, renal function and urinary citrate excretion, whereas dietary habits apparently do not affect THP excretion. Uric acid and calcium stone formation predict reduced THP excretion in comparison with C, whereas female gender goes along with increased urinary THP excretion in C. Possibly most relevant to kidney stone formation is the fact that THP excretion rises only in C in response to increasing urinary calcium and oxalate concentrations, whereas this self-protective mechanism appears to be missing in SF.  (+info)

Binding of Tamm-Horsfall protein to complement 1q measured by ELISA and resonant mirror biosensor techniques under various ionic-strength conditions. (8/196)

The purpose of the present study was to quantify the binding affinity between Tamm-Horsfall protein (THP) and complement 1q (C1q) using ELISA and a resonant mirror biosensor. In ELISA, immobilized THP was incubated with soluble C1q under both low and physiological ionic-strength conditions. Tamm-Horsfall protein bound C1q with an equilibrium dissociation constant (KD) of 1.9 +/- 0.6 nmol/L in low ionic-strength Tris buffers (20 mmol/L NaCl, pH 7.5) and with a lower affinity (KD of 13.4 +/- 4.7 nmol/L) in physiological-strength Tris buffers (154 mmol/L NaCl, pH 7.5). A resonant mirror biosensor, which monitors binding events in real-time, was used to quantify the KD of this reaction, as well as to estimate the kinetic parameters. In these studies, THP and C1q bound with an association rate constant, kass, of 1.25 x 105 L/mol per s and a dissociation rate constant, kdiss, of 0.002-0.005/s. The calculated KD for the THP/C1q binding in low ionic-strength buffers was higher (averages of 10-15 nmol/L) than that obtained by the ELISA, while physiological ionic-strength buffers still reduced the affinity of this binding by an order of magnitude. In conclusion, THP consistently bound C1q with high affinity using several techniques. At least a portion of this interaction involved electrostatic events, as demonstrated by the influence of ionic strength on the binding affinity.  (+info)