His ... Asp catalytic dyad of ribonuclease A: histidine pKa values in the wild-type, D121N, and D121A enzymes. (1/255)

Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.  (+info)

Rickettsia prowazekii transports UMP and GMP, but not CMP, as building blocks for RNA synthesis. (2/255)

Rickettsia prowazekii, the etiological agent of epidemic typhus, is an obligate intracellular bacterium and is apparently unable to synthesize ribonucleotides de novo. Here, we show that as an alternative, isolated, purified R. prowazekii organisms transported exogenous uridyl- and guanylribonucleotides and incorporated these labeled precursors into their RNA in a rifampin-sensitive manner. Transport systems for nucleotides, which we have shown previously and show here are present in rickettsiae, have never been reported in free-living bacteria, and the usual nucleobase and nucleoside transport systems are absent in rickettsiae. There was a clear preference for the monophosphate form of ribonucleotides as the transported substrate. In contrast, rickettsiae did not transport cytidylribonucleotides. The source of rickettsial CTP appears to be the transport of UMP followed by its phosphorylation and the amination of intrarickettsial UTP to CTP by CTP synthetase. A complete schema of nucleotide metabolism in rickettsiae is presented that is based on a combination of biochemical, physiological, and genetic information.  (+info)

Hypersensitive substrate for ribonucleases. (3/255)

A substrate for a hypersensitive assay of ribonucleolytic activity was developed in a systematic manner. This substrate is based on the fluorescence quenching of fluorescein held in proximity to rhodamine by a single ribonucleotide embedded within a series of deoxynucleotides. When the substrate is cleaved, the fluorescence of fluorescein is manifested. The optimal substrate is a tetranucleotide with a 5',6-carboxyfluorescein label (6-FAM) and a 3',6-carboxy-tetramethylrhodamine (6-TAMRA) label: 6-FAM-dArUdAdA-6-TAMRA. The fluorescence of this substrate increases 180-fold upon cleavage. Bovine pancreatic ribonuclease A (RNase A) cleaves this substrate with a k (cat)/ K (m)of 3.6 x 10(7)M(-1)s(-1). Human angiogenin, which is a homolog of RNase A that promotes neovascularization, cleaves this substrate with a k (cat)/ K (m)of 3. 3 x 10(2)M(-1)s(-1). This value is >10-fold larger than that for other known substrates of angio-genin. With these attributes, 6-FAM-dArUdAdA-6-TAMRA is the most sensitive known substrate for detecting ribo-nucleolytic activity. This high sensitivity enables a simple protocol for the rapid determination of the inhibition constant ( K (i)) for competitive inhibitors such as uridine 3'-phosphate and adenosine 5'-diphos-phate.  (+info)

Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. (4/255)

In budding yeast (Saccharomyces cerevisiae), the majority of box H/ACA small nucleolar RNPs (snoRNPs) have been shown to direct site-specific pseudouridylation of rRNA. Among the known protein components of H/ACA snoRNPs, the essential nucleolar protein Cbf5p is the most likely pseudouridine (Psi) synthase. Cbf5p has considerable sequence similarity to Escherichia coli TruBp, a known Psi synthase, and shares the "KP" and "XLD" conserved sequence motifs found in the catalytic domains of three distinct families of known and putative Psi synthases. To gain additional evidence on the role of Cbf5p in rRNA biosynthesis, we have used in vitro mutagenesis techniques to introduce various alanine substitutions into the putative Psi synthase domain of Cbf5p. Yeast strains expressing these mutated cbf5 genes in a cbf5Delta null background are viable at 25 degrees C but display pronounced cold- and heat-sensitive growth phenotypes. Most of the mutants contain reduced levels of Psi in rRNA at extreme temperatures. Substitution of alanine for an aspartic acid residue in the conserved XLD motif of Cbf5p (mutant cbf5D95A) abolishes in vivo pseudouridylation of rRNA. Some of the mutants are temperature sensitive both for growth and for formation of Psi in the rRNA. In most cases, the impaired growth phenotypes are not relieved by transcription of the rRNA from a polymerase II-driven promoter, indicating the absence of polymerase I-related transcriptional defects. There is little or no abnormal accumulation of pre-rRNAs in these mutants, although preferential inhibition of 18S rRNA synthesis is seen in mutant cbf5D95A, which lacks Psi in rRNA. A subset of mutations in the Psi synthase domain impairs association of the altered Cbf5p proteins with selected box H/ACA snoRNAs, suggesting that the functional catalytic domain is essential for that interaction. Our results provide additional evidence that Cbf5p is the Psi synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes.  (+info)

Alterations in ribonuclease activities in the plasma, spleen, and thymus of tumor-bearing mice. (5/255)

Six transplantable murine tumor models were evaluated for changes in RNase activity. This study was conducted with spleen and thymus homogenates, as well as with plasma collected from tumor-bearing mice. Nuclease activity directed against the synthetic substrates, polyadenylic acid, polyuridylic acid, and polycytidylic acid, was measured and the data obtained for tumor-bearing animals were compared to their normal counterparts. Elevated activity against polyuridylic acid was observed in the plasma of all tumor-bearing mice. Although not as all inclusive, RNase levels in both the spleen and thymus were generally altered as well. The observance of unilateral changes in nuclease activity directed against the synthetic substrates demonstrated that, in most cases, two or more enzymes were being detected. The assay may have some eventual value in the monitoring of cancer  (+info)

Regulation of the biosynthesis of N-acetylglucosaminylpyrophosphoryldolichol, feedback and product inhibition. (6/255)

The assembly of the core oligosaccharide region of asparagine-linked glycoproteins proceeds by means of the dolichol pathway. The first step of this pathway, the reaction of dolichol phosphate with UDP-GlcNAc to form N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-P-P-dolichol), is under investigation as a possible site of metabolic regulation. This report describes feedback inhibition of this reaction by the second intermediate of the pathway, N-acetylglucosaminyl-N-acetylglucosaminylpyrophosphoryldolichol (GlcNAc-GlcNAc-P-P-dolichol), and product inhibition by GlcNAc-P-P-dolichol itself. These influences were revealed when the reactions were carried out in the presence of showdomycin, a nucleoside antibiotic, present at concentrations that block the de novo formation of GlcNAc-GlcNAc-P-P-dolichol but not that of GlcNAc-P-P-dolichol. The apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol under basal conditions were 4.4 and 2.8 microM, respectively. Inhibition was also observed under conditions where mannosyl-P-dolichol (Man-P-dol) stimulated the biosynthesis of GlcNAc-P-P-dolichol; the apparent K(i) values for GlcNAc-P-P-dolichol and GlcNAc-GlcNAc-P-P-dolichol were 2.2 and 11 microM, respectively. Kinetic analysis of the types of inhibition indicated competitive inhibition by GlcNAc-P-P-dolichol toward the substrate UDP-GlcNAc and non-competitive inhibition toward dolichol phosphate. Inhibition by GlcNAc-GlcNAc-P-P-dolichol was uncompetitive toward UDP-GlcNAc and competitive toward dolichol phosphate. A model is presented for the kinetic mechanism of the synthesis of GlcNAc-P-P-dolichol. GlcNAc-P-P-dolichol also exerts a stimulatory effect on the biosynthesis of Man-P-dol, i.e. a reciprocal relationship to that previously observed between these two intermediates of the dolichol pathway. This network of inhibitory and stimulatory influences may be aspects of metabolic control of the pathway and thus of glycoprotein biosynthesis in general.  (+info)

A novel principle for conferring selectivity to poly(A)-binding proteins: interdependence of two ATP synthase beta-subunit mRNA-binding proteins. (7/255)

Based on electrophoretic mobility-shift assays and UV cross-linking experiments, we present evidence in the present work for the existence of two mammalian cytosolic proteins that selectively interact with the 3'-untranslated region of the mRNA coding for the catalytic beta-subunit of mitochondrial ATP synthase (beta-mtATPase). One of the proteins, beta-mtATPase mRNA-binding protein (BARB)1, is a novel poly(A)-binding protein that specifically binds the poly(A) tail of the beta-mtATPase transcript. BARB1 achieves this mRNA selectivity through its interaction with a second protein, BARB2, that binds the beta-mtATPase mRNA through a 22-bp element with a uridylate core, located 75 bp upstream of the poly(A) tail. Conversely, in the absence of BARB1, BARB2 is still able to bind the beta-mtATPase mRNA, but does so with lower affinity. Thus the interaction between BARB1 and BARB2 and beta-mtATPase mRNA involves the formation of a complex between the two BARB proteins. We conclude that BARB1 and BARB2 selectively bind the 3'-untranslated region of beta-mtATPase mRNA in a novel and interdependent manner. The complex between these two proteins may be involved in post-transcriptional regulation of gene expression.  (+info)

Poliovirus RNA-dependent RNA polymerase (3D(pol)). Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub). (8/255)

Detailed studies of the kinetics and mechanism of nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus, 3D(pol), have been limited by the inability to assemble elongation complexes that permit activity to be monitored by extension of end-labeled primers. We have solved this problem by employing a short, symmetrical, heteropolymeric RNA primer-template that we refer to as "sym/sub." Formation of 3D(pol)-sym/sub complexes is slow owing to a slow rate of association (0.1 microM(-1) s(-1)) of 3D(pol) and sym/sub and a slow isomerization (0. 076 s(-1)) of the 3D(pol)-sym/sub complex that is a prerequisite for catalytic competence of this complex. Complex assembly is stoichiometric under conditions in which competing reactions, such as enzyme inactivation, are eliminated. Inactivation of 3D(pol) occurs at a maximal rate of 0.051 s(-1) at 22 degrees C in reaction buffer lacking nucleotide. At this temperature, ATP protects 3D(pol) against inactivation with a K(0.5) of 37 microM. Once formed, 3D(pol)-sym/sub elongation complexes are stable (t((1)/(2)) = 2 h at 22 degrees C) and appear to contain only a single polymerase monomer. In the presence of Mg(2+), AMP, 2'-dAMP, and 3'-dAMP are incorporated into sym/sub by 3D(pol) at rates of 72, 0.6, and 1 s(-1), respectively. After incorporation of AMP, 3D(pol)-sym/sub product complexes have a half-life of 8 h at 22 degrees C. The stability of 3D(pol)-sym/sub complexes is temperature-dependent. At 30 degrees C, there is a 2-8-fold decrease in complex stability. Complex dissociation is the rate-limiting step for primer utilization. 3D(pol) dissociates from the end of template at a rate 10-fold faster than from internal positions. The sym/sub system will facilitate mechanistic analysis of 3D(pol) and permit a direct kinetic and thermodynamic comparison of the RNA-dependent RNA polymerase to the other classes of nucleic acid polymerases.  (+info)