Loading...
(1/295) Inhibition of nucleoside diphosphate kinase in rat liver mitochondria by added 3'-azido-3'-deoxythymidine.

The effect of 3'-azido-3'-deoxythymidine on nucleoside diphosphate kinase of isolated rat liver mitochondria has been studied. This is done by monitoring the increase in the rate of oxygen uptake by nucleoside diphosphate (TDP, UDP, CDP or GDP) addition to mitochondria in state 4. It is shown that 3'-azido-3'-deoxythymidine inhibits the mitochondrial nucleoside diphosphate kinase in a competitive manner, with a Ki value of about 10 microM as measured for each tested nucleoside diphosphate. It is also shown that high concentrations of GDP prevent 3'-azido-3'-deoxythymidine inhibition of the nucleoside diphosphate kinase.  (+info)

(2/295) Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones.

1. The P2Y6 receptor is a uridine nucleotide-specific G protein-linked receptor previously reported to stimulate the phosphoinositide (PI) pathway. We have investigated its effect in neurones, by micro-injecting its cRNA into dissociated rat sympathetic neurones and recording responses of N-type Ca2+ (I(Ca(N))) and M-type K+ (I(K(M))) currents. 2. In P2Y6 cRNA-injected neurones, UDP or UTP produced a voltage-dependent inhibition of I(Ca(N)) by approximately 53% in whole-cell (disrupted-patch) mode and by 73% in perforated-patch mode; no inhibition occurred in control cells. Mean IC50 values (whole-cell) were: UDP, 5.9+/-0.3 nM; UTP, 20+/-1 nM. ATP and ADP (1 microM) had no significant effect. Pertussis toxin (PTX) substantially (approximately 60%) reduced UTP-mediated inhibition in disrupted patch mode but not in perforated-patch mode. 3. Uridine nucleotides also inhibited I(K(M)) in P2Y6 cRNA-injected cells (by up to 71% at 10 microM UTP; perforated-patch). Mean IC50 values were: UDP, 30+/-3 nM; UTP, 115+/-12 nM. ATP (10 microM) again had no effect. No significant inhibition occurred in control cells. Inhibition was PTX-resistant. 4. Thus, the P2Y6 receptor, like the P2Y2 subtype studied in this system, couples to both of these two neuronal ion channels through at least two different G proteins. However, the P2Y6 receptor displays a much higher sensitivity to its agonists than the P2Y2 receptor in this expression system and higher than previously reported using other expression methods. The very high sensitivity to both UDP and UTP suggests that it might be preferentially activated by any locally released uridine nucleotides.  (+info)

(3/295) Inositol acylation of glycosylphosphatidylinositols in the pathogenic fungus Cryptococcus neoformans and the model yeast Saccharomyces cerevisiae.

Cryptococcus neoformans, an opportunistic fungus responsible for life-threatening infection in immunocompromised patients, is able to synthesize glycosylphosphatidylinositol (GPI) structures. Radiolabelling experiments in vitro with the use of a cryptococcal cell-free system showed that the pathway begins as in other eukaryotes, with the addition of N-acetylglucosamine to phosphatidylinositol, followed by deacetylation of the sugar residue. The third step, acylation of the inositol ring, seemed to involve a fatty acid other than palmitate, in contrast with previous findings in Saccharomyces cerevisiae and mammalian GPI pathways. A systematic study of inositol acylation in C. neoformans and S. cerevisiae showed that both organisms used a variety of fatty acids in this step; these were transferred directly from acyl-CoA to inositol without modification. However, the specificity of fatty acid utilization was quite distinct in the two fungi, with the pathogen being substantially more restrictive. In mammalian cells fatty acids added exogenously as acyl-CoAs are not transferred directly to inositol. These results suggest significant differences in the GPI biosynthetic pathway between mammalian and C. neoformans cells that could represent targets for anti-cryptococcal therapy.  (+info)

(4/295) Decreased insulin-stimulated GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats.

It was recently found that the effect of an exercise-induced increase in muscle GLUT-4 on insulin-stimulated glucose transport is masked by a decreased responsiveness to insulin in glycogen-supercompensated muscle. We evaluated the role of hexosamines in this decrease in insulin responsiveness and found that UDP-N-acetyl hexosamine concentrations were not higher in glycogen-supercompensated muscles than in control muscles with a low glycogen content. We determined whether the smaller increase in glucose transport is due to translocation of fewer GLUT-4 to the cell surface with the 2-N-4-(1-azi-2,2,2-trifluroethyl)-benzoyl-1, 3-bis(D-mannose-4-yloxy)-2-propylamine (ATB-[2-3H]BMPA) photolabeling technique. The insulin-induced increase in GLUT-4 at the cell surface was no greater in glycogen-supercompensated exercised muscle than in muscles of sedentary controls and only 50% as great as in exercised muscles with a low glycogen content. We conclude that the decreased insulin responsiveness of glucose transport in glycogen-supercompensated muscle is not due to increased accumulation of hexosamine biosynthetic pathway end products and that the smaller increase in glucose transport is mediated by translocation of fewer GLUT-4 to the cell surface.  (+info)

(5/295) An early salicylic acid-, pathogen- and elicitor-inducible tobacco glucosyltransferase: role in compartmentalization of phenolics and H2O2 metabolism.

Treatment of tobacco cell suspension cultures with a fungal elicitor of defense responses resulted in an early accumulation of the phenylpropanoid glucosyltransferase TOGT, along with the rapid synthesis and secretion of scopolin, the glucoside of scopoletin. Elicitor-triggered extracellular accumulation of the aglycone scopoletin and of free caffeic and ferulic acids could only be revealed in the presence of diphenylene iodonium, an inhibitor of extracellular H2O2 production. Our results strongly support a role for TOGT in the elicitor-stimulated production of transportable phenylpropanoid glucosides, followed by the release of free antioxidant phenolics into the extracellular medium and subsequent H2O2 scavenging.  (+info)

(6/295) Pyrimidine nucleotide-evoked inhibition of cyclic AMP accumulation in equine epithelial cells.

Uridine triphosphate (UTP) evoked inhibition of adrenaline-evoked cAMP accumulation in cultured equine epithelial cells (EC50, 1.8 +/- 0.2 microM) and this effect was mimicked by 5-Br-UTP (EC50, 6.6 +/- 1.8 microM) and uridine diphosphate (UDP; EC50, 96 +/- 26 microM). This inhibitory action of UTP was abolished by pre-treating cells with pertussis toxin (10 ng ml-1, 24 h). UTP (EC50, 2.3 +/- 0.3 microM) and 5-Br-UTP (EC50, 29.4 +/- 9.4 microM) also increased intracellular free calcium ([Ca2+]i) whilst UDP did not; the two effects are thus differentially sensitive to these pyrimidine nucleotides. ATP evoked cAMP accumulation in control cells and this response was unaffected by pertussis toxin. There is, therefore, no indication that ATP activates the pertussis toxin-sensitive inhibitory pathway. The UTP-evoked inhibition of cAMP accumulation was abolished by isobutylmethylxanthine (IBMX, 5 mM) and so the negative control over cAMP levels appears to be mediated by receptors that are selectively activated by pyrimidine nucleotides and permit control over phosphodiesterase activity.  (+info)

(7/295) Congestive heart failure induces downregulation of P2X1-receptors in resistance arteries.

OBJECTIVE: Congestive heart failure (CHF) is accompanied by enhanced peripheral sympathetic nerve activity, increased vascular resistance and impaired peripheral blood flow. Besides noradrenaline and neuropeptide Y, the sympathetic nervous system also releases ATP, which has contractile effects mediated by different subtypes of P2-receptors on the vascular smooth muscle cells. The present study was designed to examine postsynaptic changes of the contractile responses to ATP and other extracellular nucleotides in CHF. METHODS: CHF was induced by left coronary artery ligation resulting in a reproducible myocardial infarction in Sprague-Dawley rats. Contractile responses were examined in cylindrical segments of aorta and the mesenteric artery after endothelium removal. To determine if an altered response was regulated on the transcriptional level, competitive reverse transcription polymerase chain reaction (RT-PCR) was used to estimate the amount of P2X1-receptor mRNA. RESULTS: ATP, which is both a P2X1- and a P2Y-receptor agonist, induced a weaker contraction in the mesenteric artery from CHF as compared to sham operated rats. A decrease in both potency and maximum contraction was shown for the selective P2X1-receptor agonist, alpha beta-MeATP, in the mesenteric artery (pEC50 = 6.04 vs. 5.76, Cmax = 57% vs. 33%, sham vs. CHF operated rats), but not in the aorta. Competitive RT-PCR also revealed decreased P2X1-receptor mRNA levels in CHF operated rats in the mesenteric artery (9106 x 10(3) vs. 714 x 10(3) molecules/microgram, sham vs. CHF operated rats), while it remained unaltered in the aorta. To study the P2Y-receptor induced contractile effects, the P2X1-receptors were first desensitised with alpha beta-MeATP (10(-5) M for 8 min). After P2X1-receptors desensitisation, UTP and UDP induced strong contractions in both the mesenteric artery and in the aorta, while ATP and ADP were much less effective. These contractions were not altered by CHF, indicating that vascular contraction mediated by P2Y-receptors are unaffected by CHF. CONCLUSION: CHF induces downregulation of P2X1-receptor stimulated contraction in the mesenteric artery depending on decreased mRNA synthesis for the receptor, while the P2Y-receptor activity remains unchanged. Downregulation of P2X1-receptors appears to be specific for peripheral resistance arteries. This may represent a compensatory response to enhanced peripheral sympathetic nerve activity and increased vascular resistance in CHF.  (+info)

(8/295) A novel human UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T7, with specificity for partial GalNAc-glycosylated acceptor substrates.

A novel member of the human UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase gene family, designated GalNAc-T7, was cloned and expressed. GalNAc-T7 exhibited different properties compared to other characterized members of this gene family, in showing apparent exclusive specificity for partially GalNAc-glycosylated acceptor substrates. GalNAc-T7 showed no activity with a large panel of non-glycosylated peptides, but was selectively activated by partial GalNAc glycosylation of peptide substrates derived from the tandem repeats of human MUC2 and rat submaxillary gland mucin. The function of GalNAc-T7 is suggested to be as a follow-up enzyme in the initiation step of O-glycosylation.  (+info)