The effect of heavy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii. (1/29)

A strain of Acinetobacter with potential for bioremediation of heavy metal-contaminated waters was isolated from a wastewater-treatment plant operating an enhanced biological phosphate removal process. NMR and extractive methods showed that polyphosphate accumulated aerobically was degraded under anaerobic conditions both in the presence and absence of cadmium or uranium (0.2-0.5 mM). NMR showed that free phosphate was formed at the expense of polyphosphate, and an extractive technique indicated that this reaction could be stimulated by the presence of UO(2)2+ under these conditions. Energy-dispersive X-ray microanalysis demonstrated that only cadmium could enter the cells, and co-localized with intra-cellular granules containing phosphate and other divalent metals. The effects of other environmental parameters on the anaerobic phosphate metabolism were also investigated. Between pH 5.5 and 8.0, phosphate release increased with increasing pH. Between 4 degrees C and 37 degrees C, phosphate release increased with increasing temperature. The presence of nitrate at concentrations of 10 mM and above inhibited anoxic phosphate release, but supplying tungstate in the growth medium prior to anoxic incubation reduced the production of active nitrate reductase and alleviated this effect.  (+info)

Enzymically mediated bioprecipitation of uranium by a Citrobacter sp. : a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. (2/29)

A Citrobacter sp. accumulated uranyl ion (UO2(2+)) via precipitation with phosphate ligand liberated by phosphatase activity. The onset and rate of uranyl phosphate deposition were promoted by NH4(+), forming NH(4)UO(2)PO(4), which has a lower solubility product than NaUO(2)PO(4). This acceleration decoupled the rate-limiting chemical crystallization process from the biochemical phosphate ligand generation. This provided a novel approach to monitor the cell-surface-associated changes using atomic-force microscopy in conjunction with transmission electron microscopy and electron-probe X-ray microanalysis, to visualize deposition of uranyl phosphate at the cell surface. Analysis of extracted surface materials by (31)P NMR spectroscopy showed phosphorus resonances at chemical shifts of 0.3 and 2.0 p.p.m., consistent with monophosphate groups of the lipid A backbone of the lipopolysaccharide (LPS). Addition of fUO2(2+) to the extract gave a yellow precipitate which contained uranyl phosphate, while addition of Cd(2+) gave a chemical shift of both resonances to a single new resonance at 3 p.p.m. Acid-phosphatase-mediated crystal growth exocellularly was suggested by the presence of acid phosphatase, localized by immunogold labelling, on the outer membrane and on material exuded from the cells. Metal deposition is proposed to occur via an initial nucleation with phosphate groups localized within the LPS, shown by other workers to be produced exocellularly in association with phosphatase. The crystals are further consolidated with additional, enzymically generated phosphate in close juxtaposition, giving high loads of LPS-bound uranyl phosphate without loss of activity and distinguishing this from simple biosorption, or periplasmic or cellular metal accumulation mechanisms. Accumulation of 'tethered' metal phosphate within the LPS is suggested to prevent fouling of the cell surface by the accumulated precipitate and localization of phosphatase exocellularly is consistent with its possible functions in homeostatis and metal resistance.  (+info)

In vitro dissolution of uranium oxide by baboon alveolar macrophages. (3/29)

In vitro cellular dissolution tests for insoluble forms of uranium oxide are technically difficult with conventional methodology using adherent alveolar macrophages. The limited number of cells per flask and the slow dissolution rate in a large volume of nutritive medium are obvious restricting factors. Macrophages in suspension cannot be substituted because they represent different and poorly reproducible functional subtypes with regard to activation and enzyme secretion. Preliminary results on the dissolution of uranium oxide using immobilized alveolar macrophages are promising because large numbers of highly functional macrophages can be cultured in a limited volume. Cells were obtained by bronchoalveolar lavages performed on baboons (Papio papio) and then immobilized after the phagocytosis of uranium octoxide (U3O8) particles in alginate beads linked with Ca2+. The dissolution rate expressed as percentage of initial uranium content in cells was 0.039 +/- 0.016%/day for particles with a count median geometric diameter of 3.84 microns(sigma g = 1.84). A 2-fold increase in the dissolution rate was observed when the same number of particles was immobilized without macrophages. These results, obtained in vitro, suggest that the U3O8 preparation investigated should be assigned to inhalation class Y as recommended by the International Commission on Radiological Protection. Future experiments are intended to clarify this preliminary work and to examine the dissolution characteristics of other particles such as uranium dioxide. It is recommended that the dissolution rate should be measured over an interval of 3 weeks, which is compatible with the survival time of immobilized cells in culture and may reveal transformation states occurring with aging of the particles.  (+info)

In vitro chemical and cellular tests applied to uranium trioxide with different hydration states. (4/29)

A simple and rapid in vitro chemical solubility test applicable to industrial uranium trioxide (UO3) was developed together with two in vitro cellular tests using rat alveolar macrophages maintained either in gas phase or in alginate beads at 37 degrees C. Industrial UO3 was characterized by particle size, X-ray, and IR spectra, and chemical transformation (e.g., aging and hydration of the dust) was also studied. Solvents used for the in vitro chemical solubility study included carbonates, citrates, phosphates, water, Eagle's basal medium, and Gamble's solution (simulated lung fluid), alone, with oxygen, or with superoxide ions. Results, expressed in terms of the half-time of dissolution, according to International Commission on Radiological Protection (ICRP) classification (D,W,Y), varied for different hydration states of UO3, showing a lower solubility of hydrated UO3 in solvents compared to basic UO3 or UO3 heated at 450 degrees C. Two in vitro cellular tests on cultured rat alveolar macrophages (cells maintained in gas phase and cells immobilized in alginate beads) were used on the same UO3 samples and generally showed a lower solution transfer rate in the presence of macrophages than in the culture medium alone. The results of in vitro chemical and cellular tests were compared, with four main conclusions: a good reproducibility of the three tests in Eagle's basal medium the effect of hydration state on solubility, the classification of UO3 in terms of ICRP solubility criteria, and the ability of macrophages to decrease uranium solubility in medium.  (+info)

Dosimetric implications of pulmonary macrophage clusters observed within lungs of rats that have inhaled enriched UO2 particles. (5/29)

Twenty-four Fischer 344 rats were exposed to enriched uranium dioxide (UO2) aerosols to give a mean initial lung burden of 291 +/- 89 (SD) micrograms. Groups of rats were killed at 1, 7, 180, 360, 540, and 720 days post-inhalation (PI). Their lungs were fixed and inflated. Sections cut from all five lung lobes were used to prepare CR-39 neutron-induced 235U fission fragment autoradiographs. A single traverse across a CR-39 autoradiograph of a tissue section, from the left lung of all the rats, was made using a motorized microscopic stage. The traverse was divided into 10 fields. The track counts per field were used to test for homogeneity of track distribution and to assess if there was any tendency for tracks to be related to the peripheral region of the lung. Full raster scans across the entire tissue image were made on left lung autoradiographs from two animals killed at each time point to assess the homogeneity of fission fragment track distribution throughout the entire section. There was no evidence of any temporal change in the proportion of tracks associated with the lung periphery. At all time points PI, the track distribution was significantly nonhomogeneous, suggesting a nonuniform pattern of tissue irradiation from the 234U alpha particles. At time points from 180 to 720 days PI, large clusters of macrophages were observed in some of the sections taken from all five lung lobes. The total number of macrophage clusters increased with time PI. These macrophage clusters produced many 235U fission fragment tracks within the CR-39 autoradiographs.(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. (6/29)

The polyphosphate kinase gene from Pseudomonas aeruginosa was overexpressed in its native host, resulting in the accumulation of 100 times the polyphosphate seen with control strains. Degradation of this polyphosphate was induced by carbon starvation conditions, resulting in phosphate release into the medium. The mechanism of polyphosphate degradation is not clearly understood, but it appears to be associated with glycogen degradation. Upon suspension of the cells in 1 mM uranyl nitrate, nearly all polyphosphate that had accumulated was degraded within 48 h, resulting in the removal of nearly 80% of the uranyl ion and >95% of lesser-concentrated solutions. Electron microscopy, energy-dispersive X-ray spectroscopy, and time-resolved laser-induced fluorescence spectroscopy (TRLFS) suggest that this removal was due to the precipitation of uranyl phosphate at the cell membrane. TRLFS also indicated that uranyl was initially sorbed to the cell as uranyl hydroxide and was then precipitated as uranyl phosphate as phosphate was released from the cell. Lethal doses of radiation did not halt phosphate secretion from polyphosphate-filled cells under carbon starvation conditions.  (+info)

c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. (7/29)

Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracellular UO(2) nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO(2) nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO(2)-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO(2) nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO(2) nanoparticles. In the environment, such association of UO(2) nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O(2) or transport in soils and sediments.  (+info)

Functional diversity and electron donor dependence of microbial populations capable of U(VI) reduction in radionuclide-contaminated subsurface sediments. (8/29)

 (+info)