NASA--has its biological groundwork for a trip to Mars improved? (17/35)

In a 1991 editorial in The FASEB Journal, Robert W. Krauss commented on a recent report of the Presidential Advisory Committee on the Future of the U.S. Space Program (Augustine report). He concluded that, although a manned mission to Mars with life sciences as the priority was endorsed by the Committee, it failed to deal realistically with one huge gap; biological sciences have never been given high priority. According to Krauss, this left a void that will cripple, perhaps fatally, any early effort to ensure long-term survival on any mission of extended duration. The gap included insufficient flight time for fundamental biological space research and insufficient funds. Krauss expressed his opinions 15 years ago. Have we better knowledge of space biology now? This question becomes more acute now that President George W. Bush recently proposed a manned return to the moon by 2015 or 2020, with the moon to become our staging post for manned missions to Mars. Will we be ready so soon? A review of the progress in the last 15 years suggests that we will not. Because of the Columbia disaster, flight opportunities for biological sciences in shuttle spacelabs and in Space Station laboratories compete with time for engineering problems and construction. Thus, research on gravity, radiation, and isolation loses out to problems deemed to be of higher priority. Radiation in deep space and graded gravity in space with on board centrifuges are areas that must be studied before we undertake prolonged space voyages. Very recent budgetary changes within National Aeronautics and Space Administration threaten to greatly reduce the fundamental space biology funds. Are we ready for a trip to Mars? Like Krauss 15 years ago, I think not for some time.  (+info)

Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. (18/35)

In assessing the bacterial populations present in spacecraft assembly, spacecraft test, and launch preparation facilities, extremophilic bacteria (requiring severe conditions for growth) and extremotolerant bacteria (tolerant to extreme conditions) were isolated. Several cultivation approaches were employed to select for and identify bacteria that not only survive the nutrient-limiting conditions of clean room environments but can also withstand even more inhospitable environmental stresses. Due to their proximity to spacefaring objects, these bacteria pose a considerable risk for forward contamination of extraterrestrial sites. Samples collected from four geographically distinct National Aeronautics and Space Administration clean rooms were challenged with UV-C irradiation, 5% hydrogen peroxide, heat shock, pH extremes (pH 3.0 and 11.0), temperature extremes (4 degrees C to 65 degrees C), and hypersalinity (25% NaCl) prior to and/or during cultivation as a means of selecting for extremotolerant bacteria. Culture-independent approaches were employed to measure viable microbial (ATP-based) and total bacterial (quantitative PCR-based) burdens. Intracellular ATP concentrations suggested a viable microbial presence ranging from below detection limits to 10(6) cells/m(2). However, only 0.1 to 55% of these viable cells were able to grow on defined culture medium. Isolated members of the Bacillaceae family were more physiologically diverse than those reported in previous studies, including thermophiles (Geobacillus), obligate anaerobes (Paenibacillus), and halotolerant, alkalophilic species (Oceanobacillus and Exiguobacterium). Non-spore-forming microbes (alpha- and beta-proteobacteria and actinobacteria) exhibiting tolerance to the selected stresses were also encountered. The multiassay cultivation approach employed herein enhances the current understanding of the physiological diversity of bacteria housed in these clean rooms and leads us to ponder the origin and means of translocation of thermophiles, anaerobes, and halotolerant alkalophiles into these environments.  (+info)

Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station. (19/35)

 (+info)

Comprehensive census of bacteria in clean rooms by using DNA microarray and cloning methods. (20/35)

 (+info)

Performance of orbital neutron instruments for spatially resolved hydrogen measurements of airless planetary bodies. (21/35)

 (+info)

Validation of a nylon-flocked-swab protocol for efficient recovery of bacterial spores from smooth and rough surfaces. (22/35)

 (+info)

Paenibacillus phoenicis sp. nov., isolated from the Phoenix Lander assembly facility and a subsurface molybdenum mine. (23/35)

 (+info)

Defining life. (24/35)

 (+info)