Multiple point electrical stimulation of ulnar and median nerves. (1/366)

A computer-assisted method of isolating single motor units (MUs) by multiple point stimulation (MPS) of peripheral nerves is described. MPS was used to isolate 10-30 single MUs from thenar and hypothenar muscles of normal subjects and patients with entrapment neuropathies, with the original purpose of obtaining a more representative mean motor unit potential for estimating the number of MUs in a muscle. The two important results that evolved from MPS however, were: (1) in the absence of 'alternation' MUs were recruited in an orderly pattern from small to large, and from longer to shorter latencies by graded electrical stimulation in both normal and pathological cases, (2) a comparison of the sizes of MUs recruited by stimulation proximal and distal to the elbow suggested that axonal branching can occur in the forearm 200 mm or more proximal to the motor point in intrinsic hand muscles.  (+info)

The Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene is associated with a clinically distinct Charcot-Marie-Tooth phenotype. (2/366)

We observed a missense mutation in the peripheral myelin protein zero gene (MPZ, Thr124Met) in seven Charcot-Marie-Tooth (CMT) families and in two isolated CMT patients of Belgian ancestry. Allele-sharing analysis of markers flanking the MPZ gene indicated that all patients with the Thr124Met mutation have one common ancestor. The mutation is associated with a clinically distinct phenotype characterized by late onset, marked sensory abnormalities and, in some families, deafness and pupillary abnormalities. Nerve conduction velocities of the motor median nerve vary from <38 m/s to normal values in these patients. Clusters of remyelinating axons in a sural nerve biopsy demonstrate an axonal involvement, with axonal regeneration. Phenotype-genotype correlations in 30 patients with the Thr124Met MPZ mutation indicate that, based on nerve conduction velocity criteria, these patients are difficult to classify as CMT1 or CMT2. We therefore conclude that CMT patients with slightly reduced or nearly normal nerve conduction velocity should be screened for MPZ mutations, particularly when additional clinical features such as marked sensory disturbances, pupillary abnormalities or deafness are also present.  (+info)

Motor nerve conduction velocity in spinal muscular atrophy of childhood. (3/366)

The ulnar and posterior tibial conduction velocities were measured in 29 children with spinal muscular atrophy, 14 of whom had the servere form of the disease. The ulnar nerve velocity was slow in 12 of the 14 severely affected infants, but normal or fast in 11 of 14 children less severely affected. The corresponding results for the posterior tibial nerve were slow velocities in 11 of 12 infants in the severe group and normal or fast in all 11 infants less severely affected. The difficulty in distinguishing infantile spinal muscular atrophy from peripheral neuropathy is emphasized.  (+info)

Are changes in the evoked electromyogram during anaesthesia without neuromuscular blocking agents caused by failure of supramaximal nerve stimulation? (4/366)

The evoked electromyogram often decreases during anaesthesia in the absence of neuromuscular block. We have measured the electromyogram of the first dorsal interosseous muscle evoked by train-of-four stimulation of the ulnar nerve in 63 patients undergoing anaesthesia for minor surgery. We used Medicotest P-00-S electrodes, a Datex Relaxograph and a current sink in the stimulating leads in parallel with the current path through the patient. The current sink was used to shunt some of the maximum available output current from the Relaxograph while maintaining the supramaximal stimulus current passing through the patient. After 30 min of anaesthesia, when the muscle response to train-of-four was stable, the ulnar nerve stimulus current was increased by reducing the proportion shunted through the current sink. The electromyographic response did not change during the study in 13 patients. In the remaining 50 patients, the response decreased to 78.4% (SD 27.1%, range 7.5-95.0%) of baseline values over the first 20 min of anaesthesia. In 22 of these patients, the electromyographic response increased from 71.4 (SD 22.6)% to 92.3 (9.5)% of baseline responses when the stimulus current was increased by 12.3 (2.4) mA, while in the remaining 28 patients the response decreased to 83.7 (10.6)% and did not increase with increasing stimulus current. These results suggest that loss of supramaximal stimulation is partly responsible for the observed changes in the evoked electromyogram during anaesthesia.  (+info)

Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. (5/366)

1. Blockade of uptake carriers of gamma-aminobutyric acid (GABA) has been shown to modulate inhibition in cortical slices of experimental animals, although little is known about this mechanism in vivo and, in particular, in humans. 2. The effects of blockade of GABA uptake were studied using transcranial magnetic stimulation (TMS) in humans. In eight healthy volunteers several measures of cortical excitation and inhibition were obtained before and approximately 2 h after ingestion of 5-15 mg of tiagabine (TGB). 3. After TGB ingestion, the duration of the TMS-induced silent period observable in the electromyogram of the voluntarily contracted target muscle was prolonged. Similarly, paired-pulse inhibition of the motor-evoked potential (MEP), as tested by delivering two magnetic shocks of equal suprathreshold intensities at 160 ms interstimulus interval (ISI), was more pronounced. In apparent contradistinction, paired-pulse inhibition of the MEPs produced by a subthreshold conditioning stimulus delivered 3 ms prior to a suprathreshold stimulus was reduced. Paired-pulse facilitation elicited by the same double-shock protocol at an ISI of 10 ms was increased. 4. The prolongation of the GABAB receptor-mediated component of the inhibitory postsynaptic potential observed with TGB in in vitro studies probably underlies the increase in cortical silent period duration. The reduction of the paired-pulse inhibition at 3 ms, in turn, probably reflects inhibition of GABAA receptor-mediated inhibition via presynaptic GABAB receptors. 5. These data provide in vivo evidence of differential modulation of cortical inhibition by blockade of GABA uptake. Presynaptic GABA autoreceptors may be involved in modulating cortical inhibition in the human motor cortex.  (+info)

Ulnar nerve pressure: influence of arm position and relationship to somatosensory evoked potentials. (6/366)

BACKGROUND: Although the ulnar nerve is the most frequent site of perioperative neuropathy, the mechanism remains undefined. The ulnar nerve appears particularly susceptible to external pressure as it courses through the superficial condylar groove at the elbow, rendering it vulnerable to direct compression and ischemia However, there is disagreement among major anesthesia textbooks regarding optimal positioning of the arm during anesthesia. METHODS: To determine which arm position (supination, neutral orientation, or pronation) minimizes external pressure applied to the ulnar nerve, we studied 50 awake, normal volunteers using a computerized pressure sensing mat. An additional group of 15 subjects was tested on an operating table with their arm in 30 degrees, 60 degrees, and 90 degrees of abduction, as well as in supination, neutral orientation, and pronation. To determine the onset of clinical paresthesia compared to the onset and severity of somatosensory evoked potential (SSEP) electrophysiologic changes, we studied a separate group of 16 male volunteers while applying intentional pressure directly to the ulnar nerve. Data are presented as mean (median; range). RESULTS: Supination minimizes direct pressure over the ulnar nerve at the elbow (2 mmHg [0; 0-23]; n = 50), compared with both neutral forearm orientation (69 mmHg [22; 0-220]; P < 0.0001), as well as pronation (95 mmHg [61; 0-220]; P < 0.0001). Neutral forearm orientation also results in significantly less pressure over the ulnar nerve compared to pronation (P < or = 0.04). The estimated contact area of the ulnar nerve with the weight-bearing surface was significantly (P < 0.0001) smaller in the supine position (2.2 cm2 [0.5; 0-9]; n = 50) compared with both neutral orientation (5.5 cm2 [5.0; 0-13]) and pronation (5.8 cm2 [6; 0-12]). With the forearm in neutral orientation, ulnar nerve pressure decreased significantly (P < or = 0.01; n = 15) as the arm was abducted at the shoulder from 0 degrees to 90 degrees. In the 16 male subjects tested, notable alterations in ulnar nerve SSEP signals (decrease > or = 20% in N9-N9' amplitude) were detected in 15 of 16 awake males during application of intentional pressure to the ulnar nerve. However, eight of these subjects did not perceive a paresthesia, even as SSEP waveform amplitudes were decreasing 23-72%. Two of these eight subjects manifested severe decreases in SSEP amplitude (> or = 60%). CONCLUSIONS: Extrapolating these results to the clinical setting, the supinated arm position is likely to minimize pressure over the ulnar nerve. With the forearm in neutral orientation, pressure over the ulnar nerve decreases as the arm is abducted between 30 degrees and 90 degrees. In addition, up to one half of male patients may fail to perceive or experience clinical symptoms of ulnar nerve compression sufficient to elicit SSEP changes.  (+info)

Pharmacokinetics and pharmacodynamics of rapacuronium in patients with cirrhosis. (7/366)

BACKGROUND: Delayed elimination kinetics of steroidal neuromuscular blocking agents have been observed in patients with cirrhosis. Like other steroidal muscle relaxants, rapacuronium may, in part, be eliminated by the liver. To determine the influence of liver disease on its neuromuscular blocking effect, we studied the pharmacokinetics and pharmacodynamics of rapacuronium in patients with cirrhosis. METHODS: Sixteen patients undergoing elective surgery or endoscopy with general anesthesia, eight with cirrhosis and eight with normal liver function, were studied. Anesthesia was induced with fentanyl 2 microg/kg and thiopental 5-7 mg/kg and maintained with 60% nitrous oxide and 0.6-0.8% isoflurane in oxygen and repeated doses of fentanyl 1 microg/kg. Rapacuronium 1.5 mg/kg was administered intravenously before tracheal intubation. Thumb adduction force evoked by supramaximal ulnar nerve stimulation was recorded in 16 patients. Venous blood was sampled at frequent intervals for 8 h. Rapacuronium and its breakdown product Org 9488 were measured in plasma by high-pressure liquid chromatography. Values are reported as median (range). RESULTS: The central volume of distribution was increased to 131 (104-141) ml/kg in patients with cirrhosis (P < 0.01), compared with 75 (47-146) ml/kg in controls. The total apparent volume of distribution was also increased (P < 0.05) to 331 (284-488) ml/kg in patients with cirrhosis, compared with 221 (124-285) ml/kg in controls. The elimination half-life was 88 (77-102) min in controls and 90 (76-117) min in patients with cirrhosis. Plasma clearance was increased (P < 0.05) to 6.9 (6.1-8.9) ml x min(-1) x kg(-1) in patients with cirrhosis, compared with 5.3 (4.2-8.4) ml x min(-1) x kg(-1) in controls. Rapacuronium neuromuscular blocking effect was similar between the two groups. Onset time was 65 (40-110) s in controls and of 60 (52-240) s in patients with cirrhosis. Time to return to 90% of thumb adduction force control value was of 49 (28-80) min in controls and 47 (28-71) min in patients with cirrhosis. CONCLUSION: The neuromuscular blocking effect of a single bolus dose of rapacuronium in patients with cirrhosis is not different from that of patients with normal hepatic function. No decrease in plasma clearance of rapacuronium was observed in patients with cirrhosis.  (+info)

Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. (8/366)

Several observations suggest impaired central sensory integration in dystonia. We studied median and ulnar nerve somatosensory evoked potentials (SEPs) in 10 patients who had dystonia involving at least one upper limb (six had generalized, two had segmental and two had focal dystonia) and in 10 normal subjects. We compared the amplitude of spinal N13, brainstem P14, parietal N20 and P27 and frontal N30 SEPs obtained by stimulating the median and ulnar nerves simultaneously (MU), the amplitude value being obtained from the arithmetic sum of the SEPs elicited by stimulating the same nerves separately (M + U). Throughout the somatosensory system, the MU : (M + U) ratio indicates the interaction between afferent inputs from the two peripheral nerves. No significant difference was found between SEP amplitudes and latencies for individually stimulated median and ulnar nerves in dystonic patients and normal subjects, but recordings in patients yielded a significantly higher percentage ratio [MU : (M + U)x100] for spinal N13 brainstem P14 and cortical N20, P27 and N30 components. The SEP ratio of central components obtained in response to stimulation of the digital nerves of the third and fifth fingers was also higher in patients than in controls but the difference did not reach a significant level. The possible contribution of subliminal activation was ruled out by recording the ratio of SEPs in six normal subjects during voluntary contraction. This voluntary contraction did not change the ratio of SEP suppression. These findings suggest that the inhibitory integration of afferent inputs, mainly proprioceptive inputs, coming from adjacent body parts is abnormal in dystonia. This inefficient integration, which is probably due to altered surrounding inhibition, could give rise to an abnormal motor output and might therefore contribute to the motor impairment present in dystonia.  (+info)