Influence of TRP53 status on FAS membrane localization, CFLAR (c-FLIP) ubiquitinylation, and sensitivity of GC-2spd (ts) cells to undergo FAS-mediated apoptosis. (1/3688)

Previously we reported that testicular germ cells undergo FAS-mediated apoptosis after exposure of mice to the Sertoli cell toxicant mono-(2-ethylhexyl) phthalate (MEHP) and that this process is partially dependent on the TRP53 protein (p53). Recent reports have suggested that TRP53 may influence the ubiquitinylation and consequent proteosomal degradation of a negative regulator of FAS, CFLAR (L) (c-FLIP [L]), in human colon cancer cells. To further characterize the relationship between CFLAR and TRP53, we used the transformed germ cell line GC-2spd (ts), which harbors a temperature-sensitive Trp53 mutation that allows for TRP53 activation at 32 degrees C. We report here that GC-2 cells expressed a 10-fold increase in basal cell membrane FAS levels and an increased sensitivity to FAS agonistic antibody (JO2)-triggered apoptosis only when they were maintained at the permissive TRP53 temperature. After JO2 exposure, CFLAR (L) protein levels were enhanced only at the nonpermissive TRP53 temperature (37 degrees C) while real-time PCR results indicated an absence of Cflar (L) mRNA changes in GC-2 cells regardless of the temperature. Furthermore, transfection of GC-2 cells at 37 degrees C with siRNA against Cflar resulted in reduction of CFLAR (L) protein levels and increased sensitivity to JO2-mediated apoptosis. The CFLAR (L) protein was also more strongly ubiquitinylated in response to JO2 treatment at the permissive TRP53 temperature. Taken together, these data suggest that the TRP53 protein influences the sensitivity of GC-2 cells to undergo FAS-mediated apoptosis by modulating the expression of FAS on their cell membranes and subsequently influencing the degradation of the antiapoptotic protein CFLAR (L).  (+info)

Mutations within the membrane domain of HMG-CoA reductase confer resistance to sterol-accelerated degradation. (2/3688)

The pivotal event for sterol-induced degradation of the cholesterol biosynthetic enzyme HMG-CoA reductase is binding of its membrane domain to Insig proteins in the endoplasmic reticulum. Insigs are carriers for gp78, an E3 ubiquitin ligase that marks reductase for proteasomal degradation. We report here the isolation of mutant Chinese hamster ovary cell lines, designated SRD-16, -17, and -18, in which sterol-induced ubiquitination and degradation of reductase are severely impaired. These cells were produced by chemical mutagenesis and selection with SR-12813, a compound that mimics sterols in stimulating ubiquitination and degradation of reductase. Each SRD cell line was found to contain a point mutation in one reductase allele, resulting in substitutions of aspartate for serine-60 (SRD-16), arginine for glycine-87 (SRD-17), and proline for alanine-333 (SRD-18). Sterols failed to promote ubiquitination and degradation of these reductase mutants, owing to their decreased affinity for Insigs. Thus, three different point mutations in reductase, all of which localize to the membrane domain, disrupt Insig binding and abolish sterol-accelerated degradation of the enzyme.  (+info)

The dark side of EGFP: defective polyubiquitination. (3/3688)

Enhanced Green Fluorescent Protein (EGFP) is the most commonly used live cell reporter despite a number of conflicting reports that it can affect cell physiology. Thus far, the precise mechanism of GFP-associated defects remained unclear. Here we demonstrate that EGFP and EGFP fusion proteins inhibit polyubiquitination, a posttranslational modification that controls a wide variety of cellular processes, like activation of kinase signalling or protein degradation by the proteasome. As a consequence, the NF-kappaB and JNK signalling pathways are less responsive to activation, and the stability of the p53 tumour suppressor is enhanced in cell lines and in vivo. In view of the emerging role of polyubiquitination in the regulation of numerous cellular processes, the use of EGFP as a live cell reporter should be carefully considered.  (+info)

Gene-specific selection against experimental fanconi anemia gene inactivation in human cancer. (4/3688)

The Fanconi anemia (FA) gene family comprises at least 12 genes interacting in a common pathway involved in DNA repair. To gain insight into the role of FA gene inactivation occurring in tumors among the general population, we endogenously targeted in cancer cells four FA genes that act at different stages of the FA pathway. After successful mono-allelic deletion of all genes, the sequential homozygous deletion was achieved only for FANCC and FANCG, acting upstream, but not for BRCA2 or FANCD2, acting downstream in the FA pathway. Targeting of the second allele in in BRCA2 and FANCD2 heterozygote clones resulted in redeletion exclusively of the already defective allele in multiple instances (13x concerning BRCA2, 25x concerning FANCD2), strongly suggesting a detrimental phenotype. Unlike complete FANCD2 disruption, the mere reduction of FANCD2 protein levels had no discernible effect. In addition, we confirmed that human cancer cells harboring the Seckel ATR mutation display impaired FANCD2 monoubiquitination and FANCD2 nuclear focus formation, as well as an increased sensitivity to DNA interstrand-crosslinking agents. Nevertheless, these cells were viable, indicating an ATR-independent function of FANCD2, distinct from its major known functions, to be responsible for the detrimental effects of FANCD2 loss. In conclusion, we established the downstream FA genes FANCD2 and BRCA2 to represent particularly vulnerable parts of the FA pathway, providing direct evidence for the paradoxical assumption that their inactivation could be predominantly selected against in cancer cells. This would explain why certain FA gene defects, despite an apparent selection for FA pathway inactivation in cancer, are rarely observed in tumors among the general population.  (+info)

Role of ubiquitination in IGF-1 receptor signaling and degradation. (5/3688)

BACKGROUND: The insulin-like growth factor 1 receptor (IGF-1R) plays numerous crucial roles in cancer biology. The majority of knowledge on IGF-1R signaling is concerned with its role in the activation of the canonical phosphatidyl inositol-3 kinase (PI3K)/Akt and MAPK/ERK pathways. However, the role of IGF-1R ubiquitination in modulating IGF-1R function is an area of current research. In light of this we sought to determine the relationship between IGF-1R phosphorylation, ubiquitination, and modulation of growth signals. METHODOLOGY: Wild type and mutant constructs of IGF-1R were transfected into IGF-1R null fibroblasts. IGF-1R autophosphorylation and ubiquitination were determined by immunoprecipitation and western blotting. IGF-1R degradation and stability was determined by cyclohexamide-chase assay in combination with lysosome and proteasome inhibitors. PRINCIPAL FINDINGS: IGF-1R autophosphorylation was found to be an absolute requirement for receptor ubiquitination. Deletion of C-terminal domain had minimal effect on IGF-1 induced receptor autophosphorylation, however, ubiquitination and ERK activation were completely abolished. Cells expressing kinase impaired IGF-1R, exhibited both receptor ubiquitination and ERK phosphorylation, however failed to activate Akt. While IGF-1R mutants with impaired PI3K/Akt signaling were degraded mainly by the proteasomes, the C-terminal truncated one was exclusively degraded through the lysosomal pathway. CONCLUSIONS: Our data suggest important roles of ubiquitination in mediating IGF-1R signaling and degradation. Ubiquitination of IGF-1R requires receptor tyrosine kinase activity, but is not involved in Akt activation. In addition we show that the C-terminal domain of IGF-1R is a necessary requisite for ubiquitination and ERK phosphorylation as well as for proteasomal degradation of the receptor.  (+info)

ElaD, a Deubiquitinating protease expressed by E. coli. (6/3688)

BACKGROUND: Ubiquitin and ubiquitin-like proteins (Ubl) are designed to modify polypeptides in eukaryotes. Covalent binding of ubiquitin or Ubls to substrate proteins can be reversed by specific hydrolases. One particular set of cysteine proteases, the CE clan, which targets ubiquitin and Ubls, has homologs in eukaryotes, prokaryotes, and viruses. FINDINGS: We have cloned and analyzed the E. coli protein elaD, which is distantly related to eukaryotic CE clan members of the ULP/SENP protease family that are specific for SUMO and Nedd8. Previously misannotated as a putative sulfatase/phosphatase, elaD is an efficient and specific deubiquitinating enzyme in vitro. Interestingly, elaD is present in all intestinal pathogenic E. coli strains, but conspicuously absent from extraintestinal pathogenic strains (ExPECs). Further homologs of this protease can be found in Acanthamoeba Polyphaga Mimivirus, and in Alpha-, Beta-and Gammaproteobacteria. CONCLUSION: The expression of ULP/SENP-related hydrolases in bacteria therefore extends to plant pathogens and medically relevant strains of Escherichia coli, Legionella pneumophila, Rickettsiae, Chlamydiae, and Salmonellae, in which the elaD ortholog sseL has recently been identified as a virulence factor with deubiquitinating activity. As a counterpoint, our phylogenetic and functional examination reveals that ancient eukaryotic ULP/SENP proteases also have the potential of ubiquitin-specific hydrolysis, suggesting an early common origin of this peptidase clan.  (+info)

Biogenesis and function of multivesicular bodies. (7/3688)

The two major cellular sites for membrane protein degradation are the proteasome and the lysosome. Ubiquitin attachment is a sorting signal for both degradation routes. For lysosomal degradation, ubiquitination triggers the sorting of cargo proteins into the lumen of late endosomal multivesicular bodies (MVBs)/endosomes. MVB formation occurs when a portion of the limiting membrane of an endosome invaginates and buds into its own lumen. Intralumenal vesicles are degraded when MVBs fuse to lysosomes. The proper delivery of proteins to the MVB interior relies on specific ubiquitination of cargo, recognition and sorting of ubiquitinated cargo to endosomal subdomains, and the formation and scission of cargo-filled intralumenal vesicles. Over the past five years, a number of proteins that may directly participate in these aspects of MVB function and biogenesis have been identified. However, major questions remain as to exactly what these proteins do at the molecular level and how they may accomplish these tasks.  (+info)

Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal. (8/3688)

A ubiquitylation signal of a protein substrate is defined as a short primary sequence or a structural feature recognized by a specific E3. Our previous work has mapped the ubiquitylation signal of Rpn4, the transcription activator for the Saccharomyces cerevisiae proteasome genes, to an N-terminal acidic domain (NAD) consisting of amino acids 211-229. However, the molecular mechanism by which Ubr2, the cognate E3, recognizes NAD remains unclear. Here we show that phosphorylation of either Ser-214 or Ser-220 enhances the binding of NAD to Ubr2. However, phosphorylation of Ser-220 but not Ser-214 plays a predominant role in Rpn4 ubiquitylation and degradation. Interestingly, NAD does not constitute the major Ubr2-binding site of Rpn4 even though it serves as the ubiquitylation signal essential for Rpn4 degradation. By contrast, the stable binding with Ubr2 conferred by other domains of Rpn4 is not required for Rpn4 degradation. Our results indicate that ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal. This study also suggests that binding to E3 may be only a part of the function of a ubiquitylation signal.  (+info)