Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae. (1/329)

An aminotransferase which catalyzes the final step in methionine recycling from methylthioadenosine, the conversion of alpha-ketomethiobutyrate to methionine, has been purified from Klebsiella pneumoniae and characterized. The enzyme was found to be a homodimer of 45-kDa subunits, and it catalyzed methionine formation primarily using aromatic amino acids and glutamate as the amino donors. Histidine, leucine, asparagine, and arginine were also functional amino donors but to a lesser extent. The N-terminal amino acid sequence of the enzyme was determined and found to be almost identical to the N-terminal sequence of both the Escherichia coli and Salmonella typhimurium tyrosine aminotransferases (tyrB gene products). The structural gene for the tyrosine aminotransferase was cloned from K. pneumoniae and expressed in E. coli. The deduced amino acid sequence displayed 83, 80, 38, and 34% identity to the tyrosine aminotransferases from E. coli, S. typhimurium, Paracoccus denitrificans, and Rhizobium meliloti, respectively, but it showed less than 13% identity to any characterized eukaryotic tyrosine aminotransferase. Structural motifs around key invariant residues placed the K. pneumoniae enzyme within the Ia subfamily of aminotransferases. Kinetic analysis of the aminotransferase showed that reactions of an aromatic amino acid with alpha-ketomethiobutyrate and of glutamate with alpha-ketomethiobutyrate proceed as favorably as the well-known reactions of tyrosine with alpha-ketoglutarate and tyrosine with oxaloacetate normally associated with tyrosine aminotransferases. The aminotransferase was inhibited by the aminooxy compounds canaline and carboxymethoxylamine but not by substrate analogues, such as nitrotyrosine or nitrophenylalanine.  (+info)

Synthesis of a liver enzyme in hybrid cells. (2/329)

Rat hepatoma cells were fused with cells of an established mouse lymphoma line, with normal diploid mouse macrophages, lymphocytes and fibroblasts and with normal diploid rat macrophages and lymphocytes. The liver-specific enzyme tyrosine aminotransferase was produced by almost all the hybrid cells, but usually at a lower level than in the parental hepatoma cells. Most of the hybrids also showed increased levels of this enzyme after exposure to dexamethasone. In the rat x mouse hybrids, the electrophoretic mobility of the enzyme indicated that only the rat hepatoma enzyme was produced. The findings are difficult to explain in terms of simple models involving a single diffusible repressor or activator of tyrosine aminotransferase synthesis.  (+info)

Two new members of the emerging KDWK family of combinatorial transcription modulators bind as a heterodimer to flexibly spaced PuCGPy half-sites. (3/329)

Initially recognized as a HeLa factor essential for parvovirus DNA replication, parvovirus initiation factor (PIF) is a site-specific DNA-binding complex consisting of p96 and p79 subunits. We have cloned and sequenced the human cDNAs encoding each subunit and characterized their products expressed from recombinant baculoviruses. The p96 and p79 polypeptides have 40% amino acid identity, focused particularly within a 94-residue region containing the sequence KDWK. This motif, first described for the Drosophila homeobox activator DEAF-1, identifies an emerging group of metazoan transcriptional modulators. During viral replication, PIF critically regulates the viral nickase, but in the host cell it probably modulates transcription, since each subunit is active in promoter activation assays and the complex binds to previously described regulatory elements in the tyrosine aminotransferase and transferrin receptor promoters. Within its recognition site, PIF binds coordinately to two copies of the tetranucleotide PuCGPy, which, remarkably, can be spaced from 1 to 15 nucleotides apart, a novel flexibility that we suggest may be characteristic of the KDWK family. Such tetranucleotides are common in promoter regions, particularly in activating transcription factor/cyclic AMP response element-binding protein (ATF/CREB) and E-box motifs, suggesting that PIF may modulate the transcription of many genes.  (+info)

Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode. (4/329)

The crystal structure of tyrosine aminotransferase (TAT) from the parasitic protozoan Trypanosoma cruzi, which belongs to the aminotransferase subfamily Igamma, has been determined at 2.5 A resolution with the R-value R = 15.1%. T. cruzi TAT shares less than 15% sequence identity with aminotransferases of subfamily Ialpha but shows only two larger topological differences to the aspartate aminotransferases (AspATs). First, TAT contains a loop protruding from the enzyme surface in the larger cofactor-binding domain, where the AspATs have a kinked alpha-helix. Second, in the smaller substrate-binding domain, TAT has a four-stranded antiparallel beta-sheet instead of the two-stranded beta-sheet in the AspATs. The position of the aromatic ring of the pyridoxal-5'-phosphate cofactor is very similar to the AspATs but the phosphate group, in contrast, is closer to the substrate-binding site with one of its oxygen atoms pointing toward the substrate. Differences in substrate specificities of T. cruzi TAT and subfamily Ialpha aminotransferases can be attributed by modeling of substrate complexes mainly to this different position of the cofactor-phosphate group. Absence of the arginine, which in the AspATs fixes the substrate side-chain carboxylate group by a salt bridge, contributes to the inability of T. cruzi TAT to transaminate acidic amino acids. The preference of TAT for tyrosine is probably related to the ability of Asn17 in TAT to form a hydrogen bond to the tyrosine side-chain hydroxyl group.  (+info)

Physical and genetic mapping of the macular corneal dystrophy locus on chromosome 16q and exclusion of TAT and LCAT as candidate genes. (5/329)

PURPOSE: Macular corneal dystrophy (MCD) is an inherited autosomal recessive disorder that has been subdivided into three immunophenotypes, MCD types I, IA and II. We previously mapped the MCD type I gene to chromosome 16q22 and suggested that the MCD type II gene was linked to the same region. The purpose of this study was to construct a genomic contig spanning the MCD region and to narrow the MCD critical interval by haplotype analysis. The TAT and LCAT genes were mapped to determine if they might be the MCD gene. METHODS: The MCD contig was constructed by screening YAC, PAC, and BAC libraries with microsatellite, STS and EST markers, employing a systematic "DNA walking" technique. Polymorphic markers mapped and ordered on the contig were used to screen the MCD affected individuals and their family members for haplotype analysis. RESULTS: Twenty-two YAC, 30 PAC, and 17 BAC clones were mapped to form the MCD contig. Markers mapped on the contig include 19 microsatellite, 14 STS, and 15 EST markers. Moreover, 18 novel STS markers were generated. Using the mapped and ordered microsatellite markers, haplotype analysis on 21 individuals with MCD type I or type II and their family members from Iceland narrowed the MCD interval to 3 overlapping PAC clones. In addition, the TAT and LCAT genes were mapped outside the MCD region. CONCLUSIONS: We established a genomic contig for the MCD region and dramatically narrowed the MCD critical interval. Mapping data show that the TAT and LCAT genes are not the cause of MCD.  (+info)

Evidence for a common step in three different processes for modulating the kinetic properties of glucocorticoid receptor-induced gene transcription. (6/329)

The dose-response curve of steroid hormones and the associated EC(50) value are critical parameters both in the development of new pharmacologically active compounds and in the endocrine therapy of various disease states. We have recently described three different variables that can reposition the dose-response curve of agonist-bound glucocorticoid receptors (GRs): a 21-base pair sequence of the rat tyrosine aminotransferase gene called a glucocorticoid modulatory element (GME), GR concentration, and coactivator concentration. At the same time, each of these three components was found to influence the partial agonist activity of antiglucocorticoids. In an effort to determine whether these three processes proceed via independent pathways or a common intermediate, we have examined several mechanistic details. The effects of increasing concentrations of both GR and the coactivator TIF2 are found to be saturable. Furthermore, saturating levels of either GR or TIF2 inhibit the ability of each protein, and the GME, to affect further changes in the dose-response curve or partial agonist activity of antisteroids. This competitive inhibition suggests that all three modulators proceed through a common step involving a titratable factor. Support for this hypothesis comes from the observation that a fragment of the coactivator TIF2 retaining intrinsic transactivation activity is a dominant negative inhibitor of each component (GME, GR, and coactivator). This inhibition was not due to nonspecific effects on the general transcription machinery as the VP16 transactivation domain was inactive. The viral protein E1A also prevented the action of each of the three components in a manner that was independent of E1A's ability to block the histone acetyltransferase activity of CBP. Collectively, these results suggest that three different inputs (GME, GR, and coactivator) for perturbing the dose-response curve, and partial agonist activity, of GR-steroid complexes act by converging at a single step that involves a limiting factor prior to transcription initiation.  (+info)

Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats. (7/329)

Liver regeneration after two-thirds surgical partial hepatectomy (PH) in rats treated with the pyrrolizidine alkaloid retrorsine is accomplished through the activation, expansion, and differentiation of a population of small hepatocyte-like progenitor cells (SHPCs). We have examined expression of the major liver-enriched transcription factors, cytochrome P450 (CYP) enzymes, and other markers of hepatocytic differentiation in SHPCs during the protracted period of liver regeneration after PH in retrorsine-exposed rats. Early-appearing SHPCs (at 3-7 days after PH) express mRNAs for all of the major liver-enriched transcription factors at varying levels compared to fully differentiated hepatocytes. In addition, SHPCs lack (or have significantly reduced) expression of mRNA for hepatocyte markers tyrosine aminotransferase and alpha-1 antitrypsin, but their expression levels of mRNA and/or protein for WT1 and alpha-fetoprotein (AFP) are increased. With the exception of AFP expression, SHPCs resembled fully differentiated hepatocytes by 14 days after PH. Expression of AFP was maintained by most SHPCs through 14 days after PH, gradually declined through 23 days after PH, and was essentially absent from SHPC progeny by 30 days after PH. Furthermore, early appearing SHPCs lack (or have reduced expression) of hepatic CYP proteins known to be induced in rat livers after retrorsine exposure. The resistance of SHPCs to the mitoinhibitory effects of retrorsine may be directly related to a lack of CYP enzymes required to metabolize retrorsine to its toxic derivatives. These results suggest that SHPCs represent a unique parenchymal (less differentiated) progenitor cell population of adult rodent liver that is phenotypically distinct from fully differentiated hepatocytes, biliary epithelial cells, and (ductular) oval cells.  (+info)

Rat liver tryptophan pyrrolase activity and gene expression during alcohol withdrawal. (8/329)

Rat liver tryptophan (Trp) pyrrolase activity and gene expression were studied in relation to the alcohol-withdrawal syndrome (AWS). Both activity and gene expression were enhanced after withdrawal of ethanol-containing liquid diets and the time-course of these changes mirrored that of development and intensity of the behavioural disturbances of the AWS. By contrast, no correlation was observed between the AWS-induced behaviour and changes in activity of another hepatic glucocorticoid-inducible enzyme, tyrosine aminotransferase, and a negative correlation was noted between behaviour and the gene expression of this latter enzyme and also of that of the hepatic glucocorticoid receptor. We suggest that the metabolic consequences of activation of liver Trp pyrrolase during alcohol withdrawal may play a role in the behavioural features of the AWS.  (+info)