IL-11 selectively inhibits aeroallergen-induced pulmonary eosinophilia and Th2 cytokine production. (41/1246)

IL-11 is a pleiotropic cytokine that induces tissue remodeling with subepithelial fibrosis when expressed in the airway. Its effects on the Th2-dominated airway inflammation that is characteristic of asthma, however, are poorly understood. To characterize the effects of IL-11 on Th2 tissue inflammation, we compared the inflammatory responses elicited by OVA in sensitized mice in which IL-11 is overexpressed in a lung-specific fashion (CC10-IL-11) with that in transgene- wild-type littermate controls. Transgene- and CC10-IL-11 transgene+ mice had comparable levels of circulating Ag-specific IgE after sensitization. OVA challenge of sensitized transgene- mice caused airway and parenchymal eosinophilic inflammation, Th2 cell accumulation, and mucus hypersecretion with mucus metaplasia. Exaggerated levels of immunoreactive endothelial cell VCAM-1, mucin (Muc) 5ac gene expression and bronchoalveolar lavage and lung IL-4, IL-5, and IL-13 protein and mRNA were also noted. In contrast, OVA challenge in CC10-IL-11 animals elicited impressively lower levels of tissue and bronchoalveolar lavage inflammation, eosinophilia, and Th2 cell accumulation, and significantly lower levels of VCAM-1 and IL-4, IL-5, and IL-13 mRNA and protein. IL-11 did not cause a comparable decrease in mucus hypersecretion, Muc 5ac gene expression, or the level of expression of RANTES, monocyte chemoattractant protein-2, or monocyte chemoattractant protein-3. In addition, IL-11 did not augment IFN-gamma production demonstrating that the inhibitory effects of IL-11 were not due to a shift toward Th1 inflammation. These studies demonstrate that IL-11 selectively inhibits Ag-induced eosinophilia, Th2 inflammation, and VCAM-1 gene expression in pulmonary tissues.  (+info)

A role for lipopolysaccharide in turkey tracheal colonization by Bordetella avium as demonstrated in vivo and in vitro. (42/1246)

We isolated two insertion mutants of Bordetella avium that exhibited a peculiar clumped-growth phenotype and found them to be attenuated in turkey tracheal colonization. The mutants contained transposon insertions in homologues of the wlbA and wlbL genes of Bordetella pertussis. The wlb genetic locus of B. pertussis has been previously described as containing 12 genes involved in lipopolysaccharide (LPS) biosynthesis. Polyacrylamide gel analysis of LPS from B. avium wlbA and wlbL insertion mutants confirmed an alteration in the LPS profile. Subsequent cloning and complementation of the wlbA and wlbL mutants in trans with a recombinant plasmid containing the homologous wlb locus from B. avium eliminated the clumped-growth phenotype and restored the LPS profile to that of wild-type B. avium. Also, a parental level of tracheal colonization was restored to both mutants by the recombinant plasmid. Interestingly, complementation of the wlbA and wlbL mutants with a recombinant plasmid containing the heterologous wlb locus from B. pertussis, B. bronchiseptica, or Bordetella parapertussis eliminated the clumped-growth phenotype and resulted in a change in the LPS profile, although not to that of wild-type B. avium. The mutants also acquired resistance to a newly identified B. avium-specific bacteriophage, Ba1. Complementation of both wlbA and wlbL mutants with the homologous wlb locus of B. avium, but not the heterologous B. pertussis locus, restored sensitivity to Ba1. Complementation of the wlbL mutant, but not the wlbA mutant, with the heterologous wlb locus of Bordetella bronchiseptica or B. parapertussis restored partial sensitivity to Ba1. Comparisons of the LPS profile and phage sensitivity of the mutants upon complementation by wlb loci from the heterologous species and by B. avium suggested that phage sensitivity required the presence of O-antigen. At the mechanistic level, both mutants showed a dramatic decrease in serum resistance and a decrease in binding to turkey tracheal rings in vitro. In the case of serum resistance, complementation of both mutants with the homologous wlb locus of B. avium restored serum resistance to wild-type levels. However, in the case of epithelial cell binding, only complementation of the wlbA mutant completely restored binding to wild-type levels (binding was only partially restored in the wlbL mutant). This is the first characterization of LPS mutants of B. avium at the genetic level and the first report of virulence changes by both in vivo and in vitro measurements.  (+info)

Intracellular calcium and the relationship to contractility in an avian model of heart failure. (43/1246)

Global contractile heart failure was induced in turkey poults by furazolidone feeding (700 ppm). Abnormal calcium regulation appears to be a key factor in the pathophysiology of heart failure, but the cellular mechanisms contributing to changes in calcium fluxes have not been clearly defined. Isolated ventricular myocytes from non-failing and failing hearts were therefore used to determine whether the whole heart and ventricular muscle contractile dysfunctions were realized at the single cell level. Whole cell current- and voltage-clamp techniques were used to evaluate action potential configurations and L-type calcium currents, respectively. Intracellular calcium transients were evaluated in isolated myocytes with fura-2 and in isolated left ventricular muscles using aequorin. Action potential durations were prolonged in failing myocytes, which correspond to slowed cytosolic calcium clearing. Calcium current-voltage relationships were normal in failing myocytes; preliminary evidence suggests that depressed transient outward potassium currents contribute to prolonged action potential durations. The number of calcium channels (as measured by radioligand binding) were also similar in non-failing and failing hearts. Isolated ventricular muscles from failing hearts had enhanced inotropic responses, in a dose-dependent fashion, to a calcium channel agonist (Bay K 8644). These data suggest that changes in intracellular calcium mobilization kinetics and longer calcium-myofilament interaction may be able to compensate for contractile failure. We conclude that the relationship between calcium current density and sarcoplasmic reticulum calcium release is a dynamic process that may be altered in the setting of heart failure at higher contraction rates.  (+info)

Host specificity of vancomycin-resistant Enterococcus faecium. (44/1246)

Amplified-fragment length polymorphism (AFLP) analysis was used to investigate the genetic relationships among 255 vancomycin-resistant Enterococcus faecium (VREF) strains isolated from hospitalized patients, nonhospitalized persons, and various animal sources. Four major AFLP genogroups (A-D) were discriminated. The strains of each taxon shared >/=65% of the restriction fragments. Most isolates recovered from nonhospitalized persons (75%) were grouped together with all pig isolates in genogroup A. Most isolates from hospitalized patients (84%), a subset of veal calf isolates (25%), and all isolates from cats and dogs clustered in genogroup C. Most isolates from chickens (97%) and turkeys (86%) were grouped in genogroup B, whereas most veal calf isolates (70%) clustered in genogroup D. Therefore, VREF strains are predominantly host-specific, and strains isolated from hospitalized patients are genetically different from the prevailing VREF strains present in the fecal flora of nonhospitalized persons.  (+info)

The amino acid sequence of the insulin from a primitive vertebrate, the atlantic hagfish (Myxine glutinosa). (45/1246)

Insulin has been isolated and purified from the islet organs of the cyclostome, Myxine glutinosa, by means of acid-ethanol extraction, fractional precipitation, and gel filtration. The complete amino acid sequence of the hormone has been determined by Edman degradation of the S-carboxymethylated or performic acid-oxidized A and B chains, and of various tryptic peptides derived from the chains. The 52-residue hagfish insulin has many structural features in common with other vertebrate insulins including the locations of the 6 half-cystine residues, the NH2-terminal 7 residues and the COOH-terminal 6 residues of the A chain, and several shorter sequences in the B chain that are known to comprise the dimer interface in porcine insulin crystals. Of the 24 residues which are invariant among the other known insulins, 23 are identical in hagfish int 16 of these sites it contains residues not previously observed in vertebrate insulins. The B chain also contains an additional COOH-terminal residue of methionine, making it 1 residue longer than the usual 30-residue mammalian B chains. Several features of the tertiary and quaternary structure of hagfish insulin, including the probable absence of a metal ion-stabilized hexameric form, are discussed on the basis of these findings. The results suggest that the conformation of the insulin molecule has been well conserved throughout the entire evolution of the vertebrates.  (+info)

Telomeric profiles and telomerase activity in turkey satellite cell clones with different in vitro growth characteristics. (46/1246)

The satellite cell population in postnatal skeletal muscle is heterogeneous because individual satellite cells isolated from a single muscle have differing abilities to proliferate under the same in vitro conditions. Telomeres are structures found at the ends of all eukaryotic chromosomes that are characterized by repetitive DNA sequences, and they are important in determining cellular proliferation potential. The relationship between satellite cell proliferative heterogeneity and telomeric DNA was examined by digesting genomic DNA from large-colony-forming and small-colony-forming turkey satellite cell clones with HinfI, separating the restriction fragments on an agarose gel, and hybridizing the gels with an oligonucleotide probe specific for telomeric DNA. Turkey satellite cells generated telomeric restriction fragments up to approximately 180 kB. The large-colony-forming satellite cell clones had a larger proportion (P<0.05) of total telomeric restriction fragments below 33 kB than the small-colony-forming satellite cell clones. However, telomerase expression was detected in cultures from large-colony-forming and small-colony-forming turkey satellite cells suggesting that the differences in telomeric restriction fragments may not be related to the differences in in vitro proliferative behavior and that telomerase may contribute to the high in vitro growth capacity of turkey satellite cells.  (+info)

Molecular characterization of Yarrowia lipolytica and Candida zeylanoides isolated from poultry. (47/1246)

Yeast isolates from raw and processed poultry products were characterized using PCR amplification of the internally transcribed spacer (ITS) 5.8S ribosomal DNA region (ITS-PCR), restriction analysis of amplified products, randomly amplified polymorphic DNA (RAPD) analysis, and pulsed-field gel electrophoresis (PFGE). ITS-PCR resulted in single fragments of 350 and 650 bp, respectively, from eight strains of Yarrowia lipolytica and seven strains of Candida zeylanoides. Digestion of amplicons with HinfI and HaeIII produced two fragments of 200 and 150 bp from Y. lipolytica and three fragments of 350, 150, and 100 bp from C. zeylanoides, respectively. Although these fragments showed species-specific patterns and confirmed species identification, characterization did not enable intraspecies typing. Contour-clamped heterogeneous electric field PFGE separated chromosomal DNA of Y. lipolytica into three to five bands, most larger than 2 Mbp, whereas six to eight bands in the range of 750 to 2,200 bp were obtained from C. zeylanoides. Karyotypes of both yeasts showed different polymorphic patterns among strains. RAPD analysis, using enterobacterial repetitive intergenic sequences as primers, discriminated between strains within the same species. Cluster analysis of patterns formed groups that correlated with the source of isolation. For ITS-PCR, extraction of DNA by boiling yeast cells was successfully used.  (+info)

Effects of body size on take-off flight performance in the Phasianidae (Aves). (48/1246)

To evaluate the mechanisms responsible for relationships between body mass and maximum take-off performance in birds, we studied four species in the Phasianidae: northern bobwhite (Colinus virginianus), chukar (Alectoris chukar), ring-necked pheasant (Phasianus colchicus) and wild turkey (Meleagris gallopavo). These species vary in body mass from 0.2 to 5.3 kg, and they use flight almost solely to escape predators. During take-off, all the species used a similar wingbeat style that appeared to be a vortex-ring gait with a tip reversal during the upstroke. The tip reversal is unusual for birds with rounded wings; it may offer an aerodynamic advantage during rapid acceleration. Flight anatomy generally scaled geometrically, except for average wing chord and wing area, which increased more than expected as body mass (m) increased. Pectoralis strain varied from 19.1 to 35.2 % and scaled in proportion to m(0.23). This positive scaling is not consistent with the widely held assumption that muscle strain is independent of body mass among geometrically similar species. The anatomy of the species precluded measurements of in vivo pectoralis force using the strain-gauge technique that has been employed successfully in other bird species, so we could not directly test in vivo pectoralis force-velocity relationships. However, whole-body kinematics revealed that take-off power (P(ta)), the excess power available for climbing and accelerating in flight, scaled in proportion to m(0.75) and that pectoralis mass-specific P(ta) decreased in proportion to m(-)(0.26) and was directly proportional to wingbeat frequency. These trends suggest that mass-specific pectoralis work did not vary with body mass and that pectoralis stress and strain were inversely proportional, as expected from classical force-velocity models for skeletal muscle. Our observations of P(ta) were consistent with evidence from other species engaged in escape flight and, therefore, appear to contradict evidence from studies of take-off or hovering with an added payload.  (+info)