Vinblastine induces an interaction between FtsZ and tubulin in mammalian cells. (65/5514)

The Escherichia coli cell division protein FtsZ was expressed in Chinese hamster ovary cells, where it formed a striking array of dots that were independent of the mammalian cytoskeleton. Although FtsZ appears to be a bacterial homolog of tubulin, its expression had no detectable effects on the microtubule network or cell growth. However, treatment of the cells with vinblastine at concentrations that caused microtubule disassembly rapidly induced a network of FtsZ filaments that grew from and connected the dots, suggesting that the dots are an active storage form of FtsZ. Cells producing FtsZ also exhibited vinblastine- and calcium-resistant tubulin polymers that colocalized with the FtsZ network. The FtsZ polymers could be selectively disassembled, indicating that the two proteins were not copolymerized. The vinblastine effects were readily reversible by washing out the drug or by treating the cells with the vinblastine competitor, maytansine. These results demonstrate that FtsZ assembly can occur in the absence of bacterial chaperones or cofactors, that FtsZ and tubulin do not copolymerize, and that tubulin-vinblastine complexes have an enhanced ability to interact with FtsZ.  (+info)

Parallel modulation of receptor for activated C kinase 1 and protein kinase C-alpha and beta isoforms in brains of morphine-treated rats. (66/5514)

1. Receptor for activated C kinase 1 (RACK1) is an intracellular receptor for protein kinase C (PKC) that regulates the cellular enzyme localization. Because opiate drugs modulate the levels of brain PKC (Ventayol et al., 1997), the aim of this study was to assess in parallel the effects of morphine on RACK1 and PKC-alpha and beta isozymes densities in rat brain frontal cortex by immunoblot assays. 2. Acute morphine (30 mg kg(-1), i.p., 2 h) induced significant increases in the densities of RACK1 (33%), PKC-alpha (35%) and PKC-beta (23%). In contrast, chronic morphine (10-100 mg kg(-1), i.p., 5 days) induced a decrease in RACK1 levels (22%), paralleled by decreases in the levels of PKC-alpha (16%) and PKC-beta (16%). 3. Spontaneous (48 h) and naloxone (2 mg kg(-1), i.p., 2 h)-precipitated morphine withdrawal after chronic morphine induced marked up-regulations in the levels of RACK1 (38-41%), PKC-alpha (51-52%) and PKC-beta (48-62%). 4. In the same brains and for all combined treatments, there were significant positive correlations between the density of RACK1 and those of PKC-alpha (r=0.85, n = 35) and PKC-beta (r=0.75, n=32). 5. These data indicate that RACK1 is involved in the short- and long-term effects of morphine and in opiate withdrawal, and that RACK1 modulation by morphine or its withdrawal is parallel to those of PKC-alpha and beta isozymes. Since RACK1 facilitates the PKC substrate accessibility, driving its cellular localization, the coordinate regulation of the PKC/RACK system by morphine could be a relevant molecular mechanism in opiate addiction.  (+info)

Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. (67/5514)

Recently, we and others reported that the doublecortin gene is responsible for X-linked lissencephaly and subcortical laminar heterotopia. Here, we show that Doublecortin is expressed in the brain throughout the period of corticogenesis in migrating and differentiating neurons. Immunohistochemical studies show its localization in the soma and leading processes of tangentially migrating neurons, and a strong axonal labeling is observed in differentiating neurons. In cultured neurons, Doublecortin expression is highest in the distal parts of developing processes. We demonstrate by sedimentation and microscopy studies that Doublecortin is associated with microtubules (MTs) and postulate that it is a novel MAP. Our data suggest that the cortical dysgeneses associated with the loss of Doublecortin function might result from abnormal cytoskeletal dynamics in neuronal cell development.  (+info)

Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. (68/5514)

Doublecortin (DCX) is required for normal migration of neurons into the cerebral cortex, since mutations in the human gene cause a disruption of cortical neuronal migration. To date, little is known about the distribution of DCX protein or its function. Here, we demonstrate that DCX is expressed in migrating neurons throughout the central and peripheral nervous system during embryonic and postnatal development. DCX protein localization overlaps with microtubules in cultured primary cortical neurons, and this overlapping expression is disrupted by microtubule depolymerization. DCX coassembles with brain microtubules, and recombinant DCX stimulates the polymerization of purified tubulin. Finally, overexpression of DCX in heterologous cells leads to a dramatic microtubule phenotype that is resistant to depolymerization. Therefore, DCX likely directs neuronal migration by regulating the organization and stability of microtubules.  (+info)

Biochemical analysis of the interaction between elongation factor 1alpha and alpha/beta-tubulins from a ciliate, Tetrahymena pyriformis. (69/5514)

The interaction between elongation factor 1alpha (EF-1alpha) and alpha/beta-tubulins has been analyzed in vivo and in vitro. An association of both alpha- and beta-tubulins with EF-1alpha in the lysate of Tetrahymena pyriformis was detected by co-immunoprecipitation analysis. In contrast, in vitro biomolecular interaction analysis with glutathione S-transferase (GST) fusion proteins revealed that GST-beta-tubulin, but not GST-alpha-tubulin, can bind to GST-EF-1alpha. Two beta-tubulin binding sites have been identified to reside in the domains I and III of EF-1alpha. In addition, beta-tubulin itself seems to have two distinct interaction sites for each of the domains. Since domain II of EF-1alpha did not interact with beta-tubulin, we have re-evaluated the phylogenetic status of ciliates using EF-1alpha sequences devoid of domain II. The phylogenetic tree thus obtained was significantly different from that inferred from the whole sequence of EF-1alpha, suggesting the presence of functional constraints on the molecular evolution of EF-1alpha.  (+info)

New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. (70/5514)

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was considered a classical glycolytic protein examined for its pivotal role in energy production. It was also used as a model protein for analysis of protein structure and enzyme mechanisms. The GAPDH gene was utilized as a prototype for studies of genetic organization, expression and regulation. However, recent evidence demonstrates that mammalian GAPDH displays a number of diverse activities unrelated to its glycolytic function. These include its role in membrane fusion, microtubule bundling, phosphotransferase activity, nuclear RNA export, DNA replication and DNA repair. These new activities may be related to the subcellular localization and oligomeric structure of GAPDH in vivo. Furthermore, other investigations suggest that GAPDH is involved in apoptosis, age-related neurodegenerative disease, prostate cancer and viral pathogenesis. Intriguingly, GAPDH is also a unique target of nitric oxide. This review discusses the functional diversity of GAPDH in relation to its protein structure. The mechanisms through which mammalian cells may utilize GAPDH amino acid sequences to provide these new functions and to determine its intracellular localization are considered. The interrelationship between new GAPDH activities and its role in cell pathologies is addressed.  (+info)

Nucleotide-dependent bisANS binding to tubulin. (71/5514)

Non-covalent hydrophobic probes such as 5, 5'-bis(8-anilino-1-naphthalenesulfonate) (bisANS) have become increasingly popular to gain information about protein structure and conformation. However, there are limitations as bisANS binds non-specifically at multiple sites of many proteins. Successful use of this probe depends upon the development of binding conditions where only specific dye-protein interaction will occur. In this report, we have shown that the binding of bisANS to tubulin occurs instantaneously, specifically at one high affinity site when 1 mM guanosine 5'-triphosphate (GTP) is included in the reaction medium. Substantial portions of protein secondary structure and colchicine binding activity of tubulin are lost upon bisANS binding in absence of GTP. BisANS binding increases with time and occurs at multiple sites in the absence of GTP. Like GTP, other analogs, guanosine 5'-diphosphate, guanosine 5'-monophosphate and adenosine 5'-triphosphate, also displace bisANS from the lower affinity sites of tubulin. We believe that these multiple binding sites are generated due to the bisANS-induced structural changes on tubulin and the presence of GTP and other nucleotides protect those structural changes.  (+info)

Interaction of the yeast gamma-tubulin complex-binding protein Spc72p with Kar1p is essential for microtubule function during karyogamy. (72/5514)

The spindle pole body component Kar1p has a function in nuclear fusion during conjugation, a process known as karyogamy. The molecular role of Kar1p during this process is poorly understood. Here we show that the yeast gamma-tubulin complex-binding protein Spc72p interacts directly with the N-terminal domain of Kar1p, thereby targeting the gamma-tubulin complex to the half bridge, a substructure of the spindle pole body, where it organizes microtubules. This binding of Spc72p to Kar1p has only a minor role during vegetative growth, whereas it becomes essential for karyogamy in mating cells, explaining the important role of Kar1p in this process. We also show that the localization of Spc72p within the spindle pole body changes throughout the cell cycle and even more strongly in response to mating pheromone. Taken together, these observations suggest that the relocalization of Spc72p within the spindle pole body is the 'landmark' event in the pheromone-induced reorganization of the cytoplasmic microtubules.  (+info)