Loading...
(1/5514) Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum.

Staufen (Stau) is a double-stranded RNA (dsRNA)-binding protein involved in mRNA transport and localization in Drosophila. To understand the molecular mechanisms of mRNA transport in mammals, we cloned human (hStau) and mouse (mStau) staufen cDNAs. In humans, four transcripts arise by differential splicing of the Stau gene and code for two proteins with different N-terminal extremities. In vitro, hStau and mStau bind dsRNA via each of two full-length dsRNA-binding domains and tubulin via a region similar to the microtubule-binding domain of MAP-1B, suggesting that Stau cross-links cytoskeletal and RNA components. Immunofluorescent double labeling of transfected mammalian cells revealed that Stau is localized to the rough endoplasmic reticulum (RER), implicating this RNA-binding protein in mRNA targeting to the RER, perhaps via a multistep process involving microtubules. These results are the first demonstration of the association of an RNA-binding protein in addition to ribosomal proteins, with the RER, implicating this class of proteins in the transport of RNA to its site of translation.  (+info)

(2/5514) Mutations of oncoprotein 18/stathmin identify tubulin-directed regulatory activities distinct from tubulin association.

Oncoprotein 18/stathmin (Op18) is a recently identified phosphorylation-responsive regulator of the microtubule (MT) system. It was originally proposed that Op18 specifically regulates dynamic properties of MTs by associating with tubulin, but it has subsequently been proposed that Op18 acts simply by sequestering of tubulin heterodimers. We have dissected the mechanistic action of Op18 by generation of two distinct classes of mutants. One class has interruptions of the heptad repeats of a potential coiled-coil region of Op18, and the other involves substitution at all four phosphorylation sites with negatively charged Glu residues. Both types of mutation result in Op18 proteins with a limited decrease in tubulin complex formation. However, the MT-destabilizing activities of the coiled-coil mutants are more severely reduced in transfected leukemia cells than those of the Glu-substituted Op18 derivative, providing evidence for tubulin-directed regulatory activities distinct from tubulin complex formation. Analysis of Op18-mediated regulation of tubulin GTPase activity and taxol-promoted tubulin polymerization showed that while wild-type and Glu-substituted Op18 derivatives are active, the coiled-coil mutants are essentially inactive. This suggests that Op18-tubulin contact involves structural motifs that deliver a signal of regulatory importance to the MT system.  (+info)

(3/5514) Gibberellic acid stabilises microtubules in maize suspension cells to cold and stimulates acetylation of alpha-tubulin.

Gibberellic acid is known to stabilise microtubules in plant organs against depolymerisation. We have now devised a simplified cell system for studying this. Pretreatment of a maize cell suspension with gibberellic acid for just 3 h stabilised protoplast microtubules against depolymerisation on ice. In other eukaryotes, acetylation of alpha-tubulin is known to correlate with microtubule stabilisation but this is not established in plants. By isolating the polymeric tubulin fraction from maize cytoskeletons and immunoblotting with the antibody 6-11B-1, we have demonstrated that gibberellic acid stimulates the acetylation of alpha-tubulin. This is the first demonstrated link between microtubule stabilisation and tubulin acetylation in higher plants.  (+info)

(4/5514) Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells.

Arsenic exhibits a differential toxicity to cancer cells. At a high concentration (>5 microM), As2O3 causes acute necrosis in various cell lines. At a lower concentration (0.5-5 microm), it induces myeloid cell maturation and an arrest in metaphase, leading to apoptosis. As2O3-treated cells have features found with both tubulin-assembling enhancers (Taxol) and inhibitors (colchicine). Prior treatment of monomeric tubulin with As2O3 markedly inhibits GTP-induced polymerization and microtubule formation in vitro but does not destabilize GTP-induced tubulin polymers. Cross-inhibition experiments indicate that As2O3 is a noncompetitive inhibitor of GTP binding to tubulin. These observations correlate with the three-dimensional structure of beta-tubulin and suggest that the cross-linking of two vicinal cysteine residues (Cys-12 and Cys-213) by trivalent arsenic inactivates the GTP binding site. Furthermore, exogenous GTP can prevent As2O3-induced mitotic arrest.  (+info)

(5/5514) Identification of a domain in guanylyl cyclase-activating protein 1 that interacts with a complex of guanylyl cyclase and tubulin in photoreceptors.

The membrane-bound guanylyl cyclase in rod photoreceptors is activated by guanylyl cyclase-activating protein 1 (GCAP-1) at low free [Ca2+]. GCAP-1 is a Ca2+-binding protein and belongs to the superfamily of EF-hand proteins. We created an oligopeptide library of overlapping peptides that encompass the entire amino acid sequence of GCAP-1. Peptides were used in competitive screening assays to identify interaction regions in GCAP-1 that directly bind the guanylyl cyclase in bovine photoreceptor cells. We found four regions in GCAP-1 that participate in regulating guanylyl cyclase. A 15-amino acid peptide located adjacent to the second EF-hand motif (Phe73-Lys87) was identified as the main interaction domain. Inhibition of GCAP-1-stimulated guanylyl cyclase activity by the peptide Phe73-Lys87 was completely relieved when an excess amount of GCAP-1 was added. An affinity column made from this peptide was able to bind a complex of photoreceptor guanylyl cyclase and tubulin. Using an anti-GCAP-1 antibody, we coimmunoprecipitated GCAP-1 with guanylyl cyclase and tubulin. Complex formation between GCAP-1 and guanylyl cyclase was observed independent of [Ca2+]. Our experiments suggest that there exists a tight association of guanylyl cyclase and tubulin in rod outer segments.  (+info)

(6/5514) Characterization of two related Drosophila gamma-tubulin complexes that differ in their ability to nucleate microtubules.

gamma-tubulin exists in two related complexes in Drosophila embryo extracts (Moritz, M., Y. Zheng, B.M. Alberts, and K. Oegema. 1998. J. Cell Biol. 142:1- 12). Here, we report the purification and characterization of both complexes that we name gamma-tubulin small complex (gammaTuSC; approximately 280,000 D) and Drosophila gammaTuRC ( approximately 2,200,000 D). In addition to gamma-tubulin, the gammaTuSC contains Dgrip84 and Dgrip91, two proteins homologous to the Spc97/98p protein family. The gammaTuSC is a structural subunit of the gammaTuRC, a larger complex containing about six additional polypeptides. Like the gammaTuRC isolated from Xenopus egg extracts (Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nature. 378:578-583), the Drosophila gammaTuRC can nucleate microtubules in vitro and has an open ring structure with a diameter of 25 nm. Cryo-electron microscopy reveals a modular structure with approximately 13 radially arranged structural repeats. The gammaTuSC also nucleates microtubules, but much less efficiently than the gammaTuRC, suggesting that assembly into a larger complex enhances nucleating activity. Analysis of the nucleotide content of the gammaTuSC reveals that gamma-tubulin binds preferentially to GDP over GTP, rendering gamma-tubulin an unusual member of the tubulin superfamily.  (+info)

(7/5514) Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis.

The Hsp90 chaperone protein maintains the activities of a remarkable variety of signal transducers, but its most critical functions in the context of the whole organism are unknown. Point mutations of Hsp83 (the Drosophila Hsp90 gene) obtained in two different screens are lethal as homozygotes. We report that eight transheterozygous mutant combinations produce viable adults. All exhibit the same developmental defects: sterile males and sterile or weakly fertile females. We also report that scratch, a previously identified male-sterile mutation, is an allele of Hsp82 with a P-element insertion in the intron that reduces expression. Thus, it is a simple reduction in Hsp90 function, rather than possible altered functions in the point mutants, that leads to male sterility. As shown by light and electron microscopy, all stages of spermatogenesis involving microtubule function are affected, from early mitotic divisions to later stages of sperm maturation, individualization, and motility. Aberrant microtubules are prominent in yeast cells carrying mutations in HSP82 (the yeast Hsp90 gene), confirming that Hsp90 function is connected to microtubule dynamics and that this connection is highly conserved. A small fraction of Hsp90 copurifies with taxol-stabilized microtubule proteins in Drosophila embryo extracts, but Hsp90 does not remain associated with microtubules through repeated temperature-induced assembly and disassembly reactions. If the spermatogenesis phenotypes are due to defects in microtubule dynamics, we suggest these are indirect, reflecting a role for Hsp90 in maintaining critical signal transduction pathways and microtubule effectors, rather than a direct role in the assembly and disassembly of microtubules themselves.  (+info)

(8/5514) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death.

PURPOSE: To analyze the available data concerning mechanisms of action of and mechanisms of resistance to the antitubulin agents, vinca alkaloids and taxanes, and more recently described compounds. DESIGN: We conducted a review of the literature on classic and recent antitubulin agents, focusing particularly on the relationships between antitubulin agents and their intracellular target, the soluble tubulin/microtubule complex. RESULTS AND CONCLUSION: Although it is widely accepted that antitubulin agents block cell division by inhibition of the mitotic spindle, the mechanism of action of antitubulin agents on microtubules remains to be determined. The classic approach is that vinca alkaloids depolymerize microtubules, thereby increasing the soluble tubulin pool, whereas taxanes stabilize microtubules and increase the microtubular mass. More recent data suggest that both classes of agents have a similar mechanism of action, involving the inhibition of microtubule dynamics. These data suggest that vinca alkaloids and taxanes may act synergistically as antitumor agents and may be administered as combination chemotherapy in the clinic. However, enhanced myeloid and neurologic toxicity, as well as a strong dependence on the sequence of administration, presently exclude these combinations outside the context of clinical trials. Although the multidrug resistance phenotype mediated by Pgp appears to be an important mechanism of resistance to these agents, alterations of microtubule structure resulting in altered microtubule dynamics and/or altered binding of antitubulin agents may constitute a significant mechanism of drug resistance.  (+info)