Active site characterization of the exo-N-acetyl-beta-D- glucosaminidase from thermotolerant Bacillus sp. NCIM 5120: involvement of tryptophan, histidine and carboxylate residues in catalytic activity. (9/5574)

The exo-N-acetyl-beta-d-glucosaminidase (EC 3.2.1.30) from thermotolerant Bacillus sp. NCIM 5120 is a homotetramer with a molecular mass of 240000 kDa. Chemical modification studies on the purified exo-N-acetyl-beta-d-glucosaminidase revealed the involvement of a single tryptophan, histidine and carboxylate, per monomer, in the catalytic activity of the enzyme. Spectral analysis and maintenance of total enzyme activities indicated that N-acetylglucosamine (competitive inhibitor) and p-nitrophenyl-N-acetyl-beta-d-glucosaminide (substrate) prevented the modification of a single essential tryptophan, histidine and carboxylate residue. Kinetic parameters of partially inactivated enzyme (by NBS/HNBB) showed the involvement of tryptophan in substrate binding while that of histidine (by photooxidation/DEPC) and carboxylate (by EDAC/WRK) in catalysis. The Bacillus sp. NCIM 5120 exo-N-acetyl-beta-d-glucosaminidase deviates from the reported N-acetyl-beta-d-glucosaminidases and beta-hexosaminidases that utilize anchimeric assistance in their hydrolytic mechanism.  (+info)

Intracellular tryptophan pool sizes may account for differences in gamma interferon-mediated inhibition and persistence of chlamydial growth in polarized and nonpolarized cells. (10/5574)

Gamma interferon (IFN-gamma) is an important factor in the modulating inhibition of intracellular chlamydial growth and persistence. In human epithelial cells and macrophages, this inhibition is the result of depletion of the essential amino acid tryptophan via the IFN-gamma-induced enzyme indoleamine 2, 3-dioxygenase. Under these conditions, chlamydiae must successfully compete with the host cell for limited resources in order to maintain viability. We provide evidence to support the hypothesis that the host cell polarization state influences the host-pathogen interplay and outcome of IFN-gamma-mediated inhibition. In polarized cells, intracellular soluble tryptophan pools were larger than those in nonpolarized cells despite only small differences in the initial uptake rate of this amino acid compared to that in nonpolarized cells. Furthermore, in Chlamydia trachomatis-infected cells, the amounts of tryptophan consumed by the organisms were similar for cells grown in either state. We propose that intracellular tryptophan pool sizes can account for differences in IFN-gamma-mediated chlamydial persistence and growth inhibition in polarized and nonpolarized cells. Collectively, these results argue that polarized cell models, which more accurately reflect the conditions in vivo, may be more relevant than conventionally cultured cells in the study of intimate intracellular host-parasite interactions.  (+info)

Biopterin derivatives in normal and phenylketonuric patients after oral loads of L-phenylalanine, L-tyrosine, and L-tryptophan. (11/5574)

Plasma biopterin derivatives studied in 10 normal and 21 phenylketonuric children showed a significantly high concentration in the latter group. Biopterin derivatives correlated with plasma phenylalanine concentration, but in normal adults given an oral phenylalanine load the rate of increase with phenylalanine differed from that in phenylketonuric patients. A patient with hyperphenylalaninaemia, not due to phenylketonuria, had an abnormal biopterin derivatives response to phenylalanine distinct from that of patients with classical phenylketonuria. This may be a useful investigation to differentiate some variants of phenylketonuria.  (+info)

Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. (12/5574)

We used a novel computerized decision-making task to compare the decision-making behavior of chronic amphetamine abusers, chronic opiate abusers, and patients with focal lesions of orbital prefrontal cortex (PFC) or dorsolateral/medial PFC. We also assessed the effects of reducing central 5-hydroxytryptamine (5-HT) activity using a tryptophan-depleting amino acid drink in normal volunteers. Chronic amphetamine abusers showed suboptimal decisions (correlated with years of abuse), and deliberated for significantly longer before making their choices. The opiate abusers exhibited only the second of these behavioral changes. Importantly, both sub-optimal choices and increased deliberation times were evident in the patients with damage to orbitofrontal PFC but not other sectors of PFC. Qualitatively, the performance of the subjects with lowered plasma tryptophan was similar to that associated with amphetamine abuse, consistent with recent reports of depleted 5-HT in the orbital regions of PFC of methamphetamine abusers. Overall, these data suggest that chronic amphetamine abusers show similar decision-making deficits to those seen after focal damage to orbitofrontal PFC. These deficits may reflect altered neuromodulation of the orbitofrontal PFC and interconnected limbic-striatal systems by both the ascending 5-HT and mesocortical dopamine (DA) projections.  (+info)

Determination of the number and relative position of tryptophan residues in various albumins. (13/5574)

A technique is described by which both the numbers of tryptophan residues and their approximate locations in the peptide chain of a protein can be determined by cleavage with N-bromosuccinimide followed by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The number of new peptide bands appearing in the gel is a function of the number of tryptophan residues, and the relative migration of the bands permits calculation of peptide molecular weights and an estimation of the positions of the tryptophan residues in the peptide chain. The technique uses a sample of about 0.5 mg and is suitable for any protein that contains a small number of tryptophan residues. These are the very specimens that are difficult to assay accurately for tryptophan by spectrophotometric or colorimetric methods. Tryptophan residues which are within about 20 residues of the ends of the peptide chain or of each other would not be detected. The specificity of the cleavage with N-bromosuccinimide was ascertained by utilizing human serum albumin, which is known to have a single tryptophan residue at position 214. The technique was then applied to a comparative study of the numbers and locations of tryptophans in the serum albumins of 16 species, namely 11 mammals, three birds and two amphibians. The number of tryptophan residues were confirmed by an independent colorimetric method. All of the mammalian albumins contained a tryptophan residue near position 213. The three avian albumins examined have no tryptophan. Frog and toad albumins contained two tryptophan residues, which appear to be situated at different positions from those in mammalian albumins.  (+info)

The role of free serum tryptophan in the biphasic effect of acute ethanol administration on the concentrations of rat brain tryptophan, 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid. (14/5574)

1. Acute administration of ethanol exerts a biphasic effect on the concentrations of rat brain tryptophan, 5-hydroxytryptamine and 5-hydroxyindol-3-ylacetic acid. Both effects are associated with corresponding changes in the availability of circulating free tryptophan. 2. The initial increases in the above concentrations are prevented by ergotamine, are unaltered by allopurinol and are potentiated by theophylline, whereas the later decreases are prevented by both ergotamine and allopurinol. 3. It is suggested that the initial enhancement by ethanol of brain tryptophan metabolism is caused by catecholamine-mediated lipolysis followed by displacement of protein-bound serum tryptophan, whereas the activation of liver tryptophaan pyrrolase, which is produced by the same mechanism, leads to the later decreases in the brain concentrations of tryptophan and its metabolites. 4. The initial effects of ethanol can be reproduced by an equicaloric dose of sucrose, and a comparison of the two treatments alone could therefore be misleading. 5. The effects of ethanol on liver and brain tryptophan metabolism have also been examined in mice, and a comparison of the results with those previously reported suggests that the ethanol effects are strain-dependent.  (+info)

Role of lysine and tryptophan residues in the biological activity of toxin VII (Ts gamma) from the scorpion Tityus serrulatus. (15/5574)

Toxin VII (TsVII), also known as Ts gamma, is the most potent neurotoxin in the venom of the Brazilian scorpion Tityus serrulatus. It has been purified to homogeneity using a new fast and efficient method. Chemical modification of TsVII with the tryptophan-specific reagent o-nitrophenylsulfenyl chloride yielded three modified derivatives (residues Trp39, Trp50 and Trp54). Acetylation of TsVII mostly generated the monoacetylated Lys12 derivative. No side reactions were detected, as indicated by endoproteinase Lys-C peptide mapping, Edman degradation and electrospray mass spectrometry. Circular dichroism and fluorimetric measurements showed that none of the chemical modifications altered the overall structure of the derivatives. The acetylation of Lys12 or the sulfenylation of Trp39 or Trp54 led to a loss of both toxicity in mice and apparent binding affinity for rat brain and cockroach synaptosomal preparations. Sulfenylation of Trp50, however, moderately affected the toxicity of TsVII in mice and had almost no effect on its binding properties. A 3-dimensional model of TsVII was constructed by homology modeling. It suggests that the most reactive residues (Lys12 and Trp39 and Trp54) are all important in the functional disruption of neuronal sodium channels by TsVII, and are close to each other in the hydrophobic conserved region.  (+info)

Biosynthesis of indole-3-acetic acid in Azospirillum brasilense. Insights from quantum chemistry. (16/5574)

Quantum chemical methods AM1 and PM3 and chromatographic methods were used to qualitatively characterize pathways of bacterial production of indole-3-acetic acid (IAA). The standard free energy changes (delta G(o)'sum) for the synthesis of tryptophan (Trp) from chorismic acid via anthranilic acid and indole were calculated, as were those for several possible pathways for the synthesis of IAA from Trp, namely via indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and indole-3-acetonitrile (IAN). The delta G(o)'sum for Trp synthesis from chorismic acid was -402 (-434) kJ.mol-1 (values in parentheses were calculated by PM3). The delta G(o)'sum for IAA synthesis from Trp were -565 (-548) kJ.mol-1 for the IAN pathway, -481 (-506) kJ.mol-1 for the IAM pathway, and -289 (-306) kJ.mol-1 for the IPyA pathway. By HPLC analysis, the possibility was assessed that indole, anthranilic acid, and Trp might be utilized as precursors for IAA synthesis by Azospirillum brasilense strain Sp 245. The results indicate that there is a high motive force for Trp synthesis from chorismic acid and for IAA synthesis from Trp, and make it unlikely that anthranilic acid and indole act as the precursors to IAA in a Trp-independent pathway.  (+info)