Effect of acrylamide on aldolase structure. I. Induction of intermediate states. (57/5574)

Acrylamide is a fluorescence quencher frequently applied for analysis of protein fluorophores exposure with the silent assumption that it does not affect the native structure of protein. In this report, it is shown that quenching of tryptophan residues in aldolase is a time-dependent process. The Stern-Volmer constant increases from 1.32 to 2.01 M-1 during the first 100 s of incubation of aldolase with acrylamide. Two tryptophan residues/subunit are accessible to quenching after 100 s of aldolase interaction with acrylamide. Up to about 1.2 M acrylamide concentration enzyme inactivation is reversible. Independent analyses of the changes of enzyme activity, 1ANS fluorescence during its displacement from aldolase active-site, UV-difference spectra and near-UV CD spectra were carried out to monitor the transition of aldolase structure. From these measurements a stepwise transformation of aldolase molecules from native state (N) through intermediates: I1, T, I2, to denatured (D) state is concluded. The maxima of I1, T, I2 and D states populations occur at 0.2, 1.0, 2.0 and above 3.0 M of acrylamide concentration, respectively. Above 3.5 M, acrylamide aldolase molecules become irreversibly inactivated.  (+info)

Effect of acrylamide on aldolase structure. II. Characterization of aldolase unfolding intermediates. (58/5574)

Molecules of muscle aldolase A exposed to acrylamide change their conformation via I1, T, I2, D intermediates [1] and undergo a slow irreversible chemical modification of thiol groups. There is no direct correlation between activity loss and thiol groups modification. In the native enzyme two classes of Trp residues of 1. 8 ns and 4.9 ns fluorescence lifetime have been found. Acrylamide (0. 2-0.5 M) increases lifetime of longer-lived component, yet the transfer of aldolase molecules even from higher (1.0 M) perturbant concentration to a buffer, allows regain original Trp fluorescence lifetime. I1, detected at about 0.2 M acrylamide, represents low populated tetramers of preserved enzyme activity. T, of maximum population at about 0.7-1.0 M acrylamide, consists of meta-stable tetramers of partial enzymatic activity. These molecules are able to exchange their subunits with aldolase C in opposition to the native molecules. At transition point for I2 appearance (1.8 M acrylamide), aldolase becomes highly unstable: part of molecules dissociate into subunits which in the absence of perturbant are able to reassociate into active tetramers, the remaining part undergoes irreversible denaturation and aggregation. Some expansion of aldolase tetramers takes place prior to dissociation. D, observed above 3.0 M acrylamide, consists of irreversibly denatured enzyme molecules.  (+info)

Effect of self-association of alphas1-casein and its cleavage fractions alphas1-casein(136-196) and alphas1-casein(1-197),1 on aromatic circular dichroic spectra: comparison with predicted models. (59/5574)

The self-association of native alphas1-casein is driven by a sum of interactions which are both electrostatic and hydrophobic in nature. The dichroism of aromatic side chains was used to derive regio-specific evidence in relation to potential sites of alphas1-casein polymerization. Near-ultraviolet circular dichroism (CD) revealed that both tyrosine and tryptophan side chains play a role in alphas1-casein associations. Spectral evidence shows these side chains to be in an increasingly nonaqueous environment as both ionic strength and protein concentration lead to increases in the degree of self-association of the protein from dimer to higher oligomers. Near-UV CD investigation of the carboxypeptidase A treated peptide, alphas1-casein(1-197), indicated that the C-terminal residue (Trp199) may be superficial to these interactions, and that the region surrounding Trp164 is more directly involved in an aggregation site. Similar results for the cyanogen bromide cleavage peptide alphas1-casein(136-196) indicated the presence of strongly hydrophobic interactions. Association constants for the peptides of interest were determined by analytical ultracentrifugation, and also were approximated from changes in the near-UV CD curves with protein concentration. Sedimentation equilibrium experiments suggest the peptide to be dimeric at low ionic strength; like the parent protein, the peptide further polymerizes at elevated (0.224 M) ionic strength. The initial site of dimerization is suggested to be the tyrosine-rich area near Pro147, while the hydrophobic region around Pro168, containing Trp164, may be more significant in the formation of higher-order aggregates.  (+info)

Tryptophan rotamer distributions in amphipathic peptides at a lipid surface. (60/5574)

The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryptophan located at positions 2, 3, 7, 12, or 14 in the sequence. In aqueous solution, the peptides are unstructured and a triple-exponential function is required to fit the decay data. Association of the peptides with small unilamellar vesicles composed of egg phosphatidylcholine reduces the complexity of the fluorescence decays to a double exponential function, with a reduced dependence of the preexponential amplitude on peptide sequence. The data are interpreted in terms of a rotamer model in which the modality and relative proportions of the lifetime components are related to the population distribution of tryptophan chi1 rotamers about the Calpha-Cbeta bond. Peptide secondary structure and the disposition of the tryptophan residue relative to the lipid and aqueous phases in the peptide-lipid complex affect the local environment of tryptophan and influence the distribution of side-chain rotamers. The results show that measurement of the temporal decay of tryptophan emission provides a useful adjunct to other biophysical techniques for investigating peptide-lipid and protein-membrane interactions.  (+info)

A single point mutation in a group I WW domain shifts its specificity to that of group II WW domains. (61/5574)

WW domains can be divided into three groups based on their binding specificity. By random mutagenesis, we switched the specificity of the Yes-associated protein (YAP) WW1 domain, a Group I WW domain, to that of the FE65 WW domain, which belongs to Group II. We showed that a single mutation, leucine 190 (betaB5) to tryptophan, is required to switch from Group I to Group II. Although this single substitution in YAP WW1 domain is sufficient to precipitate the two protein isoforms of Mena, an in vivo ligand of FE65, we showed that an additional substitution, histidine 192 (betaB7) to glycine, significantly increased the ability of YAP to mimic FE65. This double mutant (L190W/H192G) precipitates eight of the nine protein bands that FE65 pulls down from rat brain protein lysates. Based on both our data and a sequence comparison between Group I and Group II WW domains, we propose that a block of three consecutive aromatic amino acids within the second beta-sheet of the domain is required, but not always sufficient, for a WW domain to belong to Group II. These data deepen our understanding of WW domain binding specificity and provide a basis for the rational design of modified WW domains with potential therapeutic applications.  (+info)

Colicin E1 forms a dimer after urea-induced unfolding. (62/5574)

Unfolding of the soluble colicin E1 channel peptide was examined with the use of urea as a denaturant; it was shown that it unfolds to an intermediate state in 8.5 M urea, equivalent to a dimeric species previously observed in 4 M guanidinium chloride. Single tryptophan residues, substituted into the peptide at various positions by site-directed mutagenesis, were employed as fluorescent probes of local unfolding. Unfolding profiles for specific sites within the peptide were obtained by quantifying the shifts in the fluorescence emission maxima of single tryptophan residues on unfolding and plotting them against urea concentration. Unfolding reported by tryptophan residues in the C-terminal region was not characteristic of complete peptide denaturation, as evidenced by the relatively blue-shifted values of the fluorescence emission maxima. Unfolding was also monitored by using CD spectroscopy and the fluorescent probe 2-(p-toluidinyl)-naphthalene 6-sulphonic acid; the results indicated that unfolding of helices is concomitant with the exposure of protein non-polar surface. Unfolding profiles were evaluated by non-linear least-squares curve fitting and calculation of the unfolding transition midpoint. The unfolding profiles of residues located in the N-terminal region of the peptide had lower transition midpoints than residues in the C-terminal portion. The results of unfolding analysis demonstrated that urea unfolds the peptide only partly to an intermediate state, because the C-terminal portion of the channel peptide retained significant structure in 8.5 M urea. Characterization of the peptide's global unfolding by size-exclusion HPLC revealed that the partly denatured structure that persists in 8.5 M urea is a dimer of two channel peptides, tightly associated by hydrophobic interactions. The presence of the dimerized species was confirmed by SDS/PAGE and intermolecular fluorescence resonance energy transfer.  (+info)

Modulation of neopterin formation and tryptophan degradation by Th1- and Th2-derived cytokines in human monocytic cells. (63/5574)

In order to examine the regulatory effects of major Th1-derived cytokines, such as IL-12, and Th2 cytokines, IL-4 and IL-10, on the formation of neopterin and degradation of tryptophan, two metabolic pathways induced by interferon-gamma (IFN-gamma) in human monocytes/macrophages, we investigated the human monocytic cell line THP-1, primary human macrophages, and peripheral blood mononuclear cells (PBMC). Neopterin formation and tryptophan degradation were induced similarly by IFN-gamma in all three cell types investigated, but the effects of interleukins were different between THP-1, primary macrophages and PBMC. In PBMC, but not in THP-1 cells and primary macrophages, IL-12 was found to be additive to the effects of IFN-gamma to superinduce neopterin formation and tryptophan degradation. IL-4 and IL-10 reduced the effects of IFN-gamma on monocytic cells, and both cytokines were additively antagonistic to IFN-gamma in PBMC and THP-1 cells. Finally, on preincubation, but not on addition of IL-12, the effects of IL-4 and IL-10 on PBMC could be abrogated, whereas no such effect was seen in THP-1 cells. The results show that IL-12 up-regulates neopterin formation and tryptophan degradation by inducing additional IFN-gamma production by Th1 cells, while a direct effect of IL-12 on monocytes/macrophages appears to be absent. Similarly, IL-4 and IL-10 inhibit neopterin production and tryptophan degradation in PBMC by down-regulating Th1-type cytokine production and possibly also via direct deactivation of IFN-gamma effects towards monocytes/macrophages. The results clearly show how Th1 cell-mediated immunity may be up- or down-regulated by endogenous cytokine production.  (+info)

Rotational and translational motion of troponin C. (64/5574)

Time resolved fluorescence anisotropy and sedimentation velocity has been used to study the rotational and translational hydrodynamic behavior of two mutants of chicken skeletal troponin C bearing a single tryptophan residue at position 78 or 154 in the metal-free-, metal-bound-, and troponin I peptide (residues 96-116 of troponin I)-ligated states. The fluorescence anisotropy data of both mutants were adequately described by two rotational correlation times, and these are compared with the theoretically expected values based on the rotational diffusion of an idealized dumbbell. These data imply that the motion of the N- and C-terminal domains of troponin C are independent. They also suggest that in the metal-free, calcium-saturated and calcium-saturated troponin I peptide-bound states, troponin C is elongated, having an axial ratio of 4-5. Calcium or magnesium binding to the high affinity sites alone reduces the axial ratio to approximately 3. However, with calcium bound to sites III and IV and in the presence of a 1:1 molar ratio of the troponin I peptide, troponin C is approximately spherical. The metal ion and troponin I peptide-induced length changes in troponin C may play a role in the mechanism by which the regulatory function of troponin C is effected.  (+info)