Stereochemistry of the transamination reaction catalyzed by aminodeoxychorismate lyase from Escherichia coli: close relationship between fold type and stereochemistry. (17/285)

Aminodeoxychorismate lyase is a pyridoxal 5'-phosphate-dependent enzyme that converts 4-aminodeoxychorismate to pyruvate and p-aminobenzoate, a precursor of folic acid in bacteria. The enzyme exhibits significant sequence similarity to two aminotransferases, D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase. In the present study, we have found that aminodeoxychorismate lyase catalyzes the transamination between D-alanine and pyridoxal phosphate to produce pyruvate and pyridoxamine phosphate. L-Alanine and other D- and L-amino acids tested were inert as substrates of transamination. The pro-R hydrogen of C4' of pyridoxamine phosphate was stereospecifically abstracted during the reverse half transamination from pyridoxamine phosphate to pyruvate. Aminodeoxychorismate lyase is identical to D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase in the stereospecificity of the hydrogen abstraction, and differs from all other pyridoxal enzymes that catalyze pro-S hydrogen transfer. Aminodeoxychorismate lyase is the first example of a lyase that catalyzes pro-R-specific hydrogen abstraction. The result is consistent with recent X-ray crystallographic findings showing that the topological relationships between the cofactor and the catalytic residue for hydrogen abstraction are conserved among aminodeoxychorismate lyase, D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase [Nakai, T., Mizutani, H., Miyahara, I., Hirotsu, K., Takeda, S., Jhee, K.-H., Yoshimura, T., and Esaki, N. (2000) J. Biochem. 128, 29-38].  (+info)

Tryptophan synthetase alpha(5.7-S): novel molecular species formed within Escherichia coli. (18/285)

A novel molecular species contributes about 5% of the total tryptophan synthetase of Escherichia coli derepressed for the trp operon enzymes. The new species is identified under conditions in which the dissociation of the two nonidentical subunits of the tryptophan synthetase complex is favored. The new species sediments at 5.7S, catalyzes the conversion of indole-3-glycerol phosphate to indole, and has been designated alpha(5.7-S). Although alpha(5.7-S) is not observed in extracts of trpA or trpB mutant strains deficient in the ability to form tryptophan synthetase alpha or beta2 subunits, respectively, a mixture of the two extracts allows the formation of alpha(5.7-S). Similar results are obtained when a homogeneous alpha protein is mixed with an extract of a trpA mutant strain, suggesting that the interaction of alpha and beta2 proteins is obligatory for alpha(5.7-S) formation. One can obtain a beta2 protein preparation that when mixed with a pure alpha protein gives no alpha(5.7-S). Therefore, the interaction of alpha and beta2 proteins alone is not sufficient for the formation of alpha(5.7-S). When a mixture of alpha and beta2 proteins devoid of alpha(5.7-S) is added to extracts of trp deletion mutants, the novel species can be reconstituted in vitro only when deletions are used that carry at least the operator-proximal part of the trpB gene. Therefore, it is concluded that the alpha(5.7-S) species of tryptophan synthetase results from the interaction of the alpha protein, the beta2 protein, and a third component, beta', specified by the deoxyribonucleic acid defined by the end points of two trp deletion mutants.  (+info)

Biochemical analysis of a thermostable tryptophan synthase from a hyperthermophilic archaeon. (19/285)

Pyridoxal 5'-phosphate-dependent tryptophan synthase catalyzes the last two reactions of tryptophan biosynthesis, and is comprised of two distinct subunits, alpha and beta. TktrpA and TktrpB, which encode the alpha subunit and beta subunit of tryptophan synthase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1, were independently expressed in Escherichia coli and their protein products were purified. Tryptophan synthase complex (Tk-TS complex), obtained by heat treatment of a mixture of the cell-free extracts containing each subunit, was also purified. Gel-filtration chromatography revealed that Tk-TrpA was a monomer (alpha), Tk-TrpB was a dimer (beta2), and Tk-TS complex was a tetramer (alpha2 beta2). The Tk-TS complex catalyzed the overall alphabeta reaction with a specific activity of 110 micromol Trp per micromol active site per min under its optimal conditions (80 degrees C, pH 8.5). Individual activity of the alpha and beta reactions of the Tk-TS complex were 8.5 micromol indole per micromol active site per min (70 degrees C, pH 7.0) and 119 micromol Trp per micromol active site per min (90 degrees C, pH 7.0), respectively. The low activity of the alpha reaction of the Tk-TS complex indicated that turnover of the beta reaction, namely the consumption of indole, was necessary for efficient progression of the alpha reaction. The alpha and beta reaction activities of independently purified Tk-TrpA and Tk-TrpB were 10-fold lower than the respective activities detected from the Tk-TS complex, indicating that during heat treatment, each subunit was necessary for the other to obtain a proper conformation for high enzyme activity. Tk-TrpA showed only trace activities at all temperatures examined (40-85 degrees C). Tk-TrpB also displayed low levels of activity at temperatures below 70 degrees C. However, Tk-TrpB activity increased at temperatures above 70 degrees C, and eventually at 100 degrees C, reached an equivalent level of activity with the beta reaction activity of Tk-TS complex. Taking into account the results of circular dichroism analyses of the three enzymes, a model is proposed which explains the relationship between structure and activity of the alpha and beta subunits with changes in temperature. This is the first report of an archaeal tryptophan synthase, and the first biochemical analysis of a thermostable tryptophan synthase at high temperature.  (+info)

Structural basis for the impaired channeling and allosteric inter-subunit communication in the beta A169L/beta C170W mutant of tryptophan synthase. (20/285)

We determined the 2.25 A resolution crystal structure of the betaA169L/betaC170W mutant form of the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium complexed with the alpha-active site substrate analogue 5-fluoro-indole-propanol-phosphate to identify the structural basis for the changed kinetic properties of the mutant (Anderson, K. S., Kim, A. Y., Quillen, J. M., Sayers, E., Yang, X. J., and Miles, E. W. (1995) J. Biol. Chem. 270, 29936-29944). Comparison with the wild-type enzyme showed that the betaTrp(170) side chain occludes the tunnel connecting the alpha- and beta-active sites, explaining the accumulation of the intermediate indole during a single enzyme turnover. To prevent a steric clash between betaLeu(169) and betaGly(135), located in the beta-sheet of the COMM (communication) domain (betaGly(102)-betaGly(189)), the latter reorganizes. The changed COMM domain conformation results in a loss of the hydrogen bonding networks between the alpha- and beta-active sites, explaining the poor activation of the alpha-reaction upon formation of the aminoacrylate complex at the beta-active site. The 100-fold reduced affinity for serine seems to result from a movement of betaAsp(305) away from the beta-active site so that it cannot interact with the hydroxyl group of a pyridoxal phosphate-bound serine. The proposed structural dissection of the effects of each single mutation in the betaA169L/betaC170W mutant would explain the very different kinetics of this mutant and betaC170F.  (+info)

The tryptophan synthase from Escherichia coli. An improved purification procedure for the alpha-subunit and binding studies with substrate analogues. (21/285)

An improved method is described for the purification of the alpha-subunit of tryptophan synthase from Escherichia coli. The standard manganese chloride and acid-precipitation steps have been replaced by rapid and efficient chromatographic procedures. Indoleethanol phosphate, indoleprapanol phosphate and indolebutanol phosphate have been synthesized. They are not cleaved by tryptophan synthase and are strictly competitive inhibitors versus indoleglycerol phosphate. The inhibition constant decreases as the number of methylene groups in the side chain increases. This may reflect an improved accommodation of the indole and phosphate moienerated by binding indole, indoleglycerol phosphate and indolepropanol phosphate to the alpha-subunit are very similar. This reflects the transfer of the indole moiety to an hydrophobic environment within the active center. The binding of indolepropanol phosphate to the alpha2beta2-complex perturbs the spectrum of pyridoxal 5'-phosphate located in the beta2-subunit. This demonstrates direct or indirect interactions between the component active sites. Bind studies by spectrophotometric titration and equilibrium dialysis with indolepropanol [32P]phosphate show that there is only one binding site per equivalent of alpha-subunit. Complex formation with the beta2-subunit increases the affinity of the alpha-subunit for indolepropanol phosphate, It is a general consequence of protein-protein interaction in this system.  (+info)

Entropic stabilization of the tryptophan synthase alpha-subunit from a hyperthermophile, Pyrococcus furiosus. X-ray analysis and calorimetry. (22/285)

The structure of the tryptophan synthase alpha-subunit from Pyrococcus furiosus was determined by x-ray analysis at 2.0-A resolution, and its stability was examined by differential scanning calorimetry. Although the structure of the tryptophan synthase alpha(2)beta(2) complex from Salmonella typhimurium has been already determined, this is the first report of the structure of the alpha-subunit alone. The alpha-subunit from P. furiosus (Pf-alpha-subunit) lacked 12 and 6 residues at the N and C termini, respectively, and one residue each in two loop regions as compared with that from S. typhimurium (St-alpha-subunit), resulting in the absence of an N-terminal helix and the shortening of a C-terminal helix. The structure of the Pf-alpha-subunit was essentially similar to that of the St-alpha-subunit in the alpha(2)beta(2) complex. The differences between both structures were discussed in connection with the higher stability of the Pf-alpha-subunit and the complex formation of the alpha- and beta-subunits. Calorimetric results indicated that the Pf-alpha-subunit has extremely high thermostability and that its higher stability is caused by an entropic effect. On the basis of structural information of both proteins, we analyzed the contributions of each stabilization factor and could conclude that hydrophobic interactions in the protein interior do not contribute to the higher stability of the Pf-alpha-subunit. Rather, the increase in ion pairs, decrease in cavity volume, and entropic effects due to shortening of the polypeptide chain play important roles in extremely high stability in Pf-alpha-subunit.  (+info)

Allosteric communication of tryptophan synthase. Functional and regulatory properties of the beta S178P mutant. (23/285)

The alpha(2)beta(2) tryptophan synthase complex is a model enzyme for understanding allosteric regulation. We report the functional and regulatory properties of the betaS178P mutant. Ser-178 is located at the end of helix 6 of the beta subunit, belonging to the domain involved in intersubunit signaling. The carbonyl group of betaSer-178 is hydrogen bonded to Gly-181 of loop 6 of the alpha subunit only when alpha subunit ligands are bound. An analysis by molecular modeling of the structural effects caused by the betaS178P mutation suggests that the hydrogen bond involving alphaGly-181 is disrupted as a result of localized structural perturbations. The ratio of alpha to beta subunit concentrations was calculated to be 0.7, as for the wild type, indicating the maintenance of a tight alpha-beta complex. Both the activity of the alpha subunit and the inhibitory effect of the alpha subunit ligands indole-3-acetylglycine and d,l-alpha-glycerol-3-phosphate were found to be the same for the mutant and wild type enzyme, whereas the beta subunit activity of the mutant exhibited a 2-fold decrease. In striking contrast to that observed for the wild type, the allosteric effectors indole-3-acetylglycine and d,l-alpha-glycerol-3-phosphate do not affect the beta activity. Accordingly, the distribution of l-serine intermediates at the beta-site, dominated by the alpha-aminoacrylate, is only slightly influenced by alpha subunit ligands. Binding of sodium ions is weaker in the mutant than in the wild type and leads to a limited increase of the amount of the external aldimine intermediate, even at high pH, whereas binding of cesium ions exhibits the same affinity and effects as in the wild type, leading to an increase of the alpha-aminoacrylate tautomer absorbing at 450 nm. Crystals of the betaS178P mutant were grown, and their functional and regulatory properties were investigated by polarized absorption microspectrophotometry. These findings indicate that (i) the reciprocal activation of the alpha and beta activity in the alpha2beta2 complex with respect to the isolated subunits results from interactions that involve residues different from betaSer-178 and (ii) betaSer-178 is a critical residue in ligand-triggered signals between alpha and beta active sites.  (+info)

Crystal structure of the beta Ser178--> Pro mutant of tryptophan synthase. A "knock-out" allosteric enzyme. (24/285)

The catalytic activity of the pyridoxal 5'-phosphate-dependent tryptophan synthase alpha(2)beta(2) complex is allosterically regulated. The hydrogen bond between the helix betaH6 residue betaSer(178) and the loop alphaL6 residue Gly(181) was shown to be critical in ligand-induced intersubunit signaling, with the alpha-beta communication being completely lost in the mutant betaSer(178) --> Pro (Marabotti, A., De Biase, D., Tramonti, A., Bettati, S., and Mozzarelli, A. (2001) J. Biol. Chem. 276, 17747-17753). The structural basis of the impaired allosteric regulation was investigated by determining the crystal structures of the mutant betaSer(178) --> Pro in the absence and presence of the alpha-subunit ligands indole-3-acetylglycine and glycerol 3-phosphate. The mutation causes local and distant conformational changes especially in the beta-subunit. The ligand-free structure exhibits larger differences at the N-terminal part of helix betaH6, whereas the enzyme ligand complexes show differences at the C-terminal side. In contrast to the wild-type enzyme loop alphaL6 remains in an open conformation even in the presence of alpha-ligands. This effects the equilibrium between active and inactive conformations of the alpha-active site, altering k(cat) and K(m), and forms the structural basis for the missing allosteric communication between the alpha- and beta-subunits.  (+info)