Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. (1/16)

BACKGROUND: Great arteries in congenital heart disease (CHD) may dilate, become aneurysmal, or rupture. Little is known about medial abnormalities in these arterial walls. Accordingly, we studied 18 types of CHD in patients from neonates to older adults. METHODS AND RESULTS: Intraoperative biopsies from ascending aorta, paracoarctation aorta, truncus arteriosus, and pulmonary trunk in 86 patients were supplemented by 16 necropsy specimens. The 102 patients were 3 weeks to 81 years old (average, 32+/-6 years). Biopsies were examined by light (LM) and electron (EM) microscopy; necropsy specimens by LM. Positive aortic controls were from 15 Marfan patients. Negative aortic controls were from 11 coronary artery disease patients and 1 transplant donor. Nine biopsies from acquired trileaflet aortic stenosis were compared with biopsies from bicuspid aortic stenosis. Negative pulmonary trunk controls were from 7 coronary artery disease patients. A grading system consisted of negative controls and grades 1, 2, and 3 (positive controls) based on LM and EM examination of medial constituents. CONCLUSIONS: Medial abnormalities in ascending aorta, paracoarctation aorta, truncus arteriosus, and pulmonary trunk were prevalent in patients with a variety of forms of CHD encompassing a wide age range. Aortic abnormalities may predispose to dilatation, aneurysm, and rupture. Pulmonary trunk abnormalities may predispose to dilatation and aneurysm; hypertensive aneurysms may rupture. Pivotal questions are whether these abnormalities are inherent or acquired, whether CHD plays a causal or facilitating role, and whether genetic determinants are operative.  (+info)

Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. (2/16)

Semaphorin 3C is a secreted member of the semaphorin gene family. To investigate its function in vivo, we have disrupted the semaphorin 3C locus in mice by targeted mutagenesis. semaphorin 3C mutant mice die within hours after birth from congenital cardiovascular defects consisting of interruption of the aortic arch and improper septation of the cardiac outflow tract. This phenotype is similar to that reported following ablation of the cardiac neural crest in chick embryos and resembles congenital heart defects seen in humans. Semaphorin 3C is expressed in the cardiac outflow tract as neural crest cells migrate into it. Their entry is disrupted in semaphorin 3C mutant mice. These data suggest that semaphorin 3C promotes crest cell migration into the proximal cardiac outflow tract.  (+info)

Structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart. I: the conus valves and the subendocardium. (3/16)

Sturgeons are bony fish that retain structural traits typical of the more primitive Chondrostei. From an evolutionary viewpoint, sturgeons are considered relic fish. However, they show remarkable ecological plasticity and are well adapted to contemporary environmental conditions. Although development of the cardiovascular system is critical for all organs and systems, and is affected by evolutionary changes, the structure of the sturgeon heart has been mostly overlooked. This is also true for the conus arteriosus, which, as in Chondrostei, is endowed with several rows of valves and a layer of contractile myocardium. This work reports on the structure of the valves, the endocardium, and the subendocardium of the conus arteriosus of the sturgeon (Acipenser naccarii) heart. It is part of a broader study that aims to cover the entire structure of the sturgeon heart. The conus arteriosus of 15 A. naccarii hearts, ranging in age from juveniles to sexually-differentiated adults, has been studied by conventional light, transmission (TEM), and scanning electron microscopy (SEM). In addition, maceration of the soft tissues with NaOH, and actin localization by fluorescent phalloidin has been used. The conus is a tubular chamber that arises from the right ventricular side and presents two constrictions at the conus-ventricle and conus-aorta junctions. The conus is endowed with three rows of valves: one distal and two proximal. The segment of the conus located between the distal and the two proximal rows is devoid of valvular structures. The distal row has four leaflets, while the two proximal rows show the greatest variation in leaflet number, size, and shape. All leaflets have collagenous chordae tendineae arising from the free border and from the parietal side of the leaflets. The endocardium is a flat endothelium which shows a thick, irregular basement membrane. The leaflet body is formed by a loose connective tissue which blends with the subendocardium. The subendocardium is a connective tissue consisting of myofibroblasts, collagen, and elastin. It is divided into two distinct areas: one proximal, which shows little elastin and poorly organized collagen; and one distal, which is rich in elastin, with cells and extracellular fibers organized into layers that are oriented in alternative circumferential and longitudinal directions. The present report is the first systematic analysis of the structure of the sturgeon conus. Descriptions of the conus valves should recognize the existence of three valve rows only. The variability in valve morphology, and the loose structure of the leaflet tissue make it unlikely that the valves play an effective role in preventing blood backflow. In this regard, the ventricle-conus constriction may act as a sphincter. The subendocardium is an elastic coat capable of actively sustaining the tissue deformation that accompanies the heart contractile cycle. Further comparative studies are needed to provide deeper insight into the structural changes that accompany phyletic diversification.  (+info)

The structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart: II. The myocardium, the subepicardium, and the conus-aorta transition. (4/16)

Sturgeons constitute a family of living "fossil" fish whose heart is related to that of other ancient fish and the elasmobranches. We have undertaken a systematic study of the structure of the sturgeon heart aimed at unraveling the relationship between the heart structure and the adaptive evolutionary changes. In a related paper, data were presented on the conus valves and the subendocardium. Here, the structure of the conus myocardium, the subepicardial tissue, and the conus-aorta transition were studied by conventional light, transmission, and scanning electron microscopy. In addition, actin localization by fluorescent phalloidin was used. The conus myocardium is organized into bundles whose spatial organization changes along the conus length. The variable orientation of the myocardial cell bundles may be effective in emptying the conus lumen during contraction and in preventing reflux of blood. Myocardial cell bundles are separated by loose connective tissue that contains collagen and elastin fibers, vessels, and extremely flat cells separating the cell bundles and enclosing blood vessels and collagen fibers. The ultrastructure of the myocardial cells was found to be very similar to that of other fish groups, suggesting that it is largely conservative. The subepicardium is characterized by the presence of nodular structures that contain lympho-hemopoietic (thymus-like) tissue in the young sturgeons and a large number of lymphocytes after the sturgeons reach sexual maturity. This tissue is likely implicated in the establishment and maintenance of the immune responses. The intrapericardial ventral aorta shows a middle layer of circumferentially oriented cells and internal and external layers with cells oriented longitudinally. Elastin fibers completely surround each smooth muscle cell, and the spaces between the different layers are occupied by randomly arranged collagen bundles. The intrapericardial segment of the ventral aorta is a true transitional segment whose structural characteristics are different from those of both the conus subendocardium and the rest of the ventral aorta.  (+info)

Septation and separation within the outflow tract of the developing heart. (5/16)

The developmental anatomy of the ventricular outlets and intrapericardial arterial trunks is a source of considerable confusion. First, major problems exist because of the multiple names and definitions used to describe this region of the heart as it develops. Second, there is no agreement on the boundaries of the described components, nor on the number of ridges or cushions to be found dividing the outflow tract, and the pattern of their fusion. Evidence is also lacking concerning the role of the fused cushions relative to that of the so-called aortopulmonary septum in separating the intrapericardial components of the great arterial trunks. In this review, we discuss the existing problems, as we see them, in the context of developmental and postnatal morphology. We concentrate, in particular, on the changes in the nature of the wall of the outflow tract, which is initially myocardial throughout its length. Key features that, thus far, do not seem to have received appropriate attention are the origin, and mode of separation, of the intrapericardial portions of the arterial trunks, and the formation of the walls of the aortic and pulmonary valvar sinuses. Also as yet undetermined is the formation of the free-standing muscular subpulmonary infundibulum, the mechanism of its separation from the aortic valvar sinuses, and its differentiation, if any, from the muscular ventricular outlet septum.  (+info)

Histological study of the proximal and distal segments of the embryonic outflow tract and great arteries. (6/16)

The normal development of the ventricular outlets and proximal region of the great arteries is a controversial subject. It is known that the conus, truncus arteriosus (truncus), and aortic sac participate; however, there are some doubts as to the actual prospective fate of the truncus. Some authors propose that it gives origin to the proximal region of the great arteries and that the myocardial cells of its wall become smooth muscle. Nevertheless, others think that the truncus only forms the arterial valve apparatus and that therefore the myocardial cells transform into fibroblasts. As a first approach to beginning to elucidate which process occurs, the aim of this article was to study the histological changes in the wall of these components of the developing heart in chick embryos whose hearts had been labeled at the truncoconal boundary at stage 22HH, tracing the changes up to stage 36HH. Also, the histological constitution of the wall of the pulmonary arterial trunk and its valve apparatus were studied in the posthatching and adult hearts of chickens and rats. The conus and truncus walls were always encircled by a myocardial sleeve from the outset of their development. Between stages 26HH to 28HH, the truncal myocardial cells adjacent to the mesenchymal tissue of the ridges began to lose cell-to-cell contacts and invaded the extracellular matrix. At stage 24HH, the aortic sac began to project into the pericardial cavity and became divided into two channels by the aortic-pulmonary septum at stage 26HH. The wall of the aortic sac is mostly constituted by a compact mesenchymal tissue. Initially, it does not have smooth muscle but this starts to appear at stage 30HH. The insertion ring of the valves, a broad structure, was formed by mesenchymal tissue. Both structures were always covered by a myocardial sleeve. The leaflets developed from the truncal ridges, the segment immediately proximal to the aortic sac. Our results indicate that the proximal region of the pulmonary and aortic arteries do not originate from the truncus arteriosus; rather, we found that they take origin from the aortic sac. Thus, our findings agree with the proposal that the myocardial cells of the external sleeve of the truncus become fibroblastic and suggest that the insertion ring of the arterial valves has a dual origin: fibroblasts produced by truncal myocardial transdiferentiation and the mesenchymal tissue of the proximal region of the truncal ridges, while the leaflets have their origin from the truncal ridges. We discuss the fact that, because the truncus arteriosus does not give origin to the trunks of the aortic and pulmonary arteries, it may be necessary to modify terminology. Based on our results, together with the new findings obtained by in vivo labeling, immunostaining, a chimeric approach, and ultrastructural studies, we propose a developmental model that correlates the fate of the conus, truncus, and aortic sac with the normal morphogenesis of the ventricular outlet tracts and the trunks of the great arteries. (c) 2005 Wiley-Liss, Inc.  (+info)

Repair of conotruncal abnormalities with the use of the valved conduit: improved early and midterm results with the cryopreserved homograft. (7/16)

Repair of complex cardiac lesions has been facilitated by the availability of valved conduits to reestablish right ventricular to pulmonary artery continuity. From 1977 to June 1991, 148 patients underwent repair with insertion of a conduit. Their mean age was 6.6 years (11 days to 45 years). The diagnosis was transposition of the great arteries with ventricular septal defect and left ventricular outflow tract obstruction in 51, truncus arteriosus in 36, pulmonary atresia with ventricular septal defect in 25, tetralogy of Fallot in 19, double-outlet right ventricle in 10, pulmonary atresia with intact ventricular septum in 6 and atrioventricular canal with pulmonary atresia in 1. A Dacron porcine-valved conduit was used in 37, a homograft conduit in 106 and a nonvalved conduit in 5. There were 13 early deaths overall (8.8%); 8 (22%) of the early deaths occurred in the 37 patients who received a Dacron graft, 4 (3.8%) occurred in the 106 patients who received a homograft and 1 occurred in a patient with a nonvalved Gore-Tex conduit. An additional patient underwent orthotopic heart transplantation in the early postoperative period. In 117 patients operated on from January 1985 to June 1991 the early mortality rate was 2.6% (3 of 117). Among 28 patients receiving a Dacron porcine-valved graft there were two late deaths (7.1%) after a mean follow-up interval of 93 months, and 8 patients required reoperation for conduit obstruction. Among 102 homograft recipients there were two late deaths (1.9%).(ABSTRACT TRUNCATED AT 250 WORDS)  (+info)

Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart. (8/16)

A review concerning some embryogenetic aspects of the cardiac outflow tract is presented. Two main topics are discussed: the truncal septation and the secondary heart field. In the context of the septation of the truncus arteriosus, the development of the arterial valves is largely discussed, particularly in reference to the sinuses of Valsalva. Emphasis is also given to the fate of the external myocardial wall of the truncus arteriosus, as this primordial myocardial surface disappears later in the development. Molecular genetics data concerning Sox4 and NF-Atc transcription factors are correlated in the present review with rare forms of truncus malformations encountered in human pathology. The roles exerted by the secondary heart field and the neural crest on the development and growth of the conotruncal musculature are largely discussed. Reported experimental ablations of both secondary heart field and neural crest, showed conotruncal defects such as persistent truncus arteriosus, tetralogy of Fallot, and double-outlet right ventricle, which were considered as the result of a short outflow tract causing, ultimately, a lack of conotruncal rotation. In this regard, some morphologic correlations are carried out, in the present review, between these experimental animal models and human malformations, and it is thought that this sort of conotruncal defects cannot be explained always in terms of conotruncal hypoplasia. Finally, influence of Pitx2c, a left-right laterality signaling gene, on the modulation of the conotruncal rotation, as most recently reported, is emphasized in terms of very likely multifactorial contributions in the embryogenesis of the conotruncal region of the heart.  (+info)