Search for oncogenic regulators in an autocrine tumor model using differential display PCR: identification of novel candidate genes including the calcium channel mtrp6. (1/1065)

A hemopoietic multistep tumor model, in which IL-3 dependent PB-3c mast cells, following expression of v-H-ras progress in vivo to IL-3 producing autocrine tumors has previously been established. Central for this oncogenic progression is a recessive step, which is reversible by cell fusion and leads to stabilization of IL-3 mRNA with concomitant activation of the autocrine loop. Comparing the IL-3 dependent PB-3c and the IL-3 autocrine V2D1 tumor cells with differential display PCR revealed 12 differentially expressed genes of which eight were upregulated and four downregulated in the tumor. They included four proteases (mouse mast cell protease 2, granzyme B, pepsinogen F and serine protease 1) and two metabolic enzymes (adenine phosphoribosyltransferase and fructose1,6-bisphosphatase). For validation, expression of the identified genes was tested in independent PB-3c precursor clones and their tumor derivatives. Expression of an endogenous retroviral IAP element and three unknown transcripts were consistently upregulated in all tumor lines. In somatic cell hybrids, two of these unknown cDNAs showed a dominant and one a recessive expression pattern. One transcript, expressed in the precursor but downregulated in the tumor cells, was cloned and identified as the murine calcium channel mtrp6.  (+info)

Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2+ entry channel. (2/1065)

Capacitative Ca2+ entry (CCE) is Ca2+ entering after stimulation of inositol 1,4,5-trisphosphate (IP3) formation and initiation of Ca2+ store depletion. One hallmark of CCE is that it can also be triggered merely by store depletion, as occurs after inhibition of internal Ca2+ pumps with thapsigargin. Evidence has accumulated in support of a role of transient receptor potential (Trp) proteins as structural subunits of a class of Ca2+-permeable cation channels activated by agonists that stimulate IP3 formation-very likely through a direct interaction between the IP3 receptor and a Trp subunit of the Ca2+ entry channel. The role of Trp's in Ca2+ entry triggered by store depletion alone is less clear. Only a few of the cloned Trp's appear to enhance this type of Ca2+ entry, and when they do, the effect requires special conditions to be observed, which native CCE does not. Here we report the full-length cDNA of mouse trp2, the homologue of the human trp2 pseudogene. Mouse Trp2 is shown to be readily activated not only after stimulation with an agonist but also by store depletion in the absence of an agonist. In contrast to other Trp proteins, Trp2-mediated Ca2+ entry activated by store depletion is seen under the same conditions that reveal endogenous store depletion-activated Ca2+ entry, i.e., classical CCE. The findings support the general hypothesis that Trp proteins are subunits of store- and receptor-operated Ca2+ channels.  (+info)

Specific association of the gene product of PKD2 with the TRPC1 channel. (3/1065)

The function(s) of the genes (PKD1 and PKD2) responsible for the majority of cases of autosomal dominant polycystic kidney disease is unknown. While PKD1 encodes a large integral membrane protein containing several structural motifs found in known proteins involved in cell-cell or cell-matrix interactions, PKD2 has homology to PKD1 and the major subunit of the voltage-activated Ca2+ channels. We now describe sequence homology between PKD2 and various members of the mammalian transient receptor potential channel (TRPC) proteins, thought to be activated by G protein-coupled receptor activation and/or depletion of internal Ca2+ stores. We show that PKD2 can directly associate with TRPC1 but not TRPC3 in transfected cells and in vitro. This association is mediated by two distinct domains in PKD2. One domain involves a minimal region of 73 amino acids in the C-terminal cytoplasmic tail of PKD2 shown previously to constitute an interacting domain with PKD1. However, distinct residues within this region mediate specific interactions with TRPC1 or PKD1. The C-terminal domain is sufficient but not necessary for the PKD2-TRPC1 association. A more N-terminal domain located within transmembrane segments S2 and S5, including a putative pore helical region between S5 and S6, is also responsible for the association. Given the ability of the TRPC to form functional homo- and heteromultimeric complexes, these data provide evidence that PKD2 may be functionally related to TRPC proteins and suggest a possible role of PKD2 in modulating Ca2+ entry in response to G protein-coupled receptor activation and/or store depletion.  (+info)

Cloning of Trp1beta isoform from rat brain: immunodetection and localization of the endogenous Trp1 protein. (4/1065)

The Trp gene product has been proposed as a candidate protein for the store-operated Ca2+ channel, but the Trp protein(s) has not been identified in any nonexcitable cell. We report here the cloning of a rat brain Trp1beta cDNA and detection and immunolocalization of the endogenous and expressed Trp1 protein. A 400-bp product, with >95% homology to mouse Trp1, was amplified from rat submandibular gland RNA. Rat-specific primers were used for cloning of a full-length rat brain Trp1beta cDNA (rTrp1), encoding a protein of 759 amino acids. Northern blot analysis demonstrated the transcript in several rat and mouse tissues. The peptide (amino acids 523-536) was used to generate a polyclonal antiserum. The affinity-purified antibody 1) immunoprecipitated human Trp1 (hTrp1) from transfected HEK-293 cells, 2) reacted with a protein of approximately 92 kDa, but not with hTrp3, in membranes of hTrp3-expressing HEK-293 cells, and 3) reacted with proteins of 92 and 56 kDa in human and rat brain membranes. Confocal microscopy and cell fractionation demonstrated that endogenous and expressed hTrp1 and expressed hTrp3 proteins were localized in the plasma membrane of HEK-293 cells, consistent with their proposed role in Ca2+ influx. The data demonstrate for the first time the presence of Trp1 protein in a nonexcitable cell.  (+info)

TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. (5/1065)

The vomeronasal organ (VNO) of terrestrial vertebrates plays a key role in the detection of pheromones, chemicals released by animals that elicit stereotyped sexual and aggressive behaviors among conspecifics. Sensory transduction in the VNO appears unrelated to that in the vertebrate olfactory and visual systems: the putative pheromone receptors of the VNO are evolutionarily independent from the odorant receptors and, in contrast to vertebrate visual and olfactory transduction, vomeronasal transduction is unlikely to be mediated by cyclic-nucleotide-gated channels. We hypothesized that sensory transduction in the VNO might instead involve an ion channel of the transient receptor potential (TRP) family, members of which mediate cyclic-nucleotide-independent sensory responses in Drosophila melanogaster and Caenorhabditis elegans and play unknown functions in mammals. We have isolated a cDNA (rTRP2) from rat VNO encoding a protein of 885 amino acids that is equally distant from vertebrate and invertebrate TRP channels (10-30% amino acid identity). rTRP2 mRNA is exclusively expressed in VNO neurons, and the protein is highly localized to VNO sensory microvilli, the proposed site of pheromone sensory transduction. The absence of Ca2+ stores in sensory microvilli suggests that, in contrast to a proposed mechanism of activation of mammalian TRP channels, but in accord with analysis of TRP function in Drosophila phototransduction, the gating of TRP2 is independent from the depletion of internal Ca2+ stores. Thus, TRP2 is likely to participate in vomeronasal sensory transduction, which may share additional similarities with light-induced signaling in the Drosophila eye.  (+info)

Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. (6/1065)

1. We combined patch clamp and fura-2 fluorescence methods to characterize human TRP3 (hTRP3) channels heterologously expressed in cultured bovine pulmonary artery endothelial (CPAE) cells, which do not express the bovine trp3 isoform (btrp3) but express btrp1 and btrp4. 2. ATP, bradykinin and intracellular InsP3 activated a non-selective cation current (IhTRP3) in htrp3-transfected CPAE cells but not in non-transfected wild-type cells. During agonist stimulation, the sustained rise in [Ca2+]i was significantly higher in htrp3-transfected cells than in control CPAE cells. 3. The permeability for monovalent cations was PNa > PCs approximately PK >> PNMDG and the ratio PCa/PNa was 1.62 +/- 0.27 (n = 11). Removal of extracellular Ca2+ enhanced the amplitude of the agonist-activated IhTRP3 as well as that of the basal current The trivalent cations La3+ and Gd3+ were potent blockers of IhTRP3 (the IC50 for La3+ was 24.4 +/- 0.7 microM). 4. The single-channel conductance of the channels activated by ATP, assessed by noise analysis, was 23 pS. 5. Thapsigargin and 2,5-di-tert-butyl-1, 4-benzohydroquinone (BHQ), inhibitors of the organellar Ca2+-ATPase, failed to activate IhTRP3. U-73122, a phospholipase C blocker, inhibited IhTRP3 that had been activated by ATP and bradykinin. Thimerosal, an InsP3 receptor-sensitizing compound, enhanced IhTRP3, but calmidazolium, a calmodulin antagonist, did not affect IhTRP3. 6. It is concluded that hTRP3 forms non-selective plasmalemmal cation channels that function as a pathway for agonist-induced Ca2+ influx.  (+info)

Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. (7/1065)

Characterization of mammalian homologues of Drosophila transient receptor potential protein (TRP) is an important clue to understand molecular mechanisms underlying Ca(2+) influx activated in response to stimulation of G(q) protein-coupled receptors in vertebrate cells. Here we have isolated cDNA encoding a novel seventh mammalian TRP homologue, TRP7, from mouse brain. TRP7 showed abundant RNA expression in the heart, lung, and eye and moderate expression in the brain, spleen, and testis. TRP7 recombinantly expressed in human embryonic kidney cells exhibited distinctive functional features, compared with other TRP homologues. Basal influx activity accompanied by reduction in Ca(2+) release from internal stores was characteristic of TRP7-expressing cells but was by far less significant in cells expressing TRP3, which is structurally the closest to TRP7 in the TRP family. TRP7 induced Ca(2+) influx in response to ATP receptor stimulation at ATP concentrations lower than those necessary for activation of TRP3 and for Ca(2+) release from the intracellular store, which suggests that the TRP7 channel is activated independently of Ca(2+) release. In fact, TRP7 expression did not affect capacitative Ca(2+) entry induced by thapsigargin, whereas TRP7 greatly potentiated Mn(2+) influx induced by diacylglycerols without involvement of protein kinase C. Nystatin-perforated and conventional whole-cell patch clamp recordings from TRP7-expressing cells demonstrated the constitutively activated and ATP-enhanced inward cation currents, both of which were initially blocked and then subsequently facilitated by extracellular Ca(2+) at a physiological concentration. Impairment of TRP7 currents by internal perfusion of the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid revealed an essential role of intracellular Ca(2+) in activation of TRP7, and their potent activation by the diacylglycerol analogue suggests that the TRP7 channel is a new member of diacylglycerol-activated cation channels. Relative permeabilities indicate that TRP7 is slightly selective to divalent cations. Thus, our findings reveal an interesting correspondence of TRP7 to the background and receptor stimulation-induced cation currents in various native systems.  (+info)

The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. (8/1065)

In the present work, we studied the interaction and effect of several IP3 receptor (IP3R) constructs on the gating of the store-operated (SOC) hTrp3 channel. Full-length IP3R coupled to silent hTrp3 channels in intact cells but did not activate them until stores were depleted of Ca2+. By contrast, constructs containing the IP3-binding domain activated silent hTrp3 channels in unstimulated cells and restored gating of hTrp3 by IP3 in excised plasma membrane patches. We conclude that the N-terminal domain of the IP3R functions as a gate and is sufficient for activation of SOCs. The sensing and transduction domains of the IP3R are required to maintain SOCs in an inactive state.  (+info)