Powerful activation of skeletal muscle actomyosin ATPase by goniodomin A is highly sensitive to troponin/tropomyosin complex. (41/1370)

Goniodomin A has been shown to cause the conformational change of actin to modify actomyosin ATPase activity. Goniodomin A induced a potent stimulation of the actomyosin ATPase activities of the actin-myosin reconstituted system and natural actomyosin in the range of 10(-8) to 10(-7) M. When the concentration was increased above 10(-7) M, actomyosin ATPase activity was decreased. Interestingly, the troponin/tropomyosin complex caused a concentration-dependent inhibition of the goniodomin A-induced stimulation of actomyosin ATPase activity. In the presence of a high concentration of the troponin/tropomyosin complex, goniodomin A decreased actomyosin ATPase activity in a concentration-dependent manner. The enhancement of the ATPase activity of troponin/tropomyosin-free natural actomyosin by goniodomin A was larger than that obtained with natural actomyosin. Goniodomin A at lower concentrations enhanced the superprecipitation of natural actomyosin but decreased it at higher concentrations. The ATPase activity of skeletal muscle myofibrils and the contractile response of skinned fibers to Ca(2+) were never activated and were decreased by this compound, suggesting an inhibition by the troponin/tropomyosin complex. In the far ultraviolet circular dichroism, goniodomin A above 10(-8) M increased the negative ellipticity at 220 nm, suggesting an increase in the alpha-helical content of actin. These results suggest that goniodomin A increases and decreases actomyosin ATPase activity, probably through the stimulatory and inhibitory sites on actin, respectively. It is also suggested that the troponin/tropomyosin complex binds to actin to inhibit the goniodomin A-induced enhancement of actomyosin ATPase activity, probably by affecting the stimulatory site on the molecule.  (+info)

Regulation of Ci-tropomyosin-like, a Brachyury target gene in the ascidian, Ciona intestinalis. (42/1370)

Brachyury is a sequence-specific transcriptional activator that is essential for notochord differentiation in a variety of chordates. In vertebrates, Brachyury is expressed throughout the presumptive mesoderm, but becomes restricted to the notochord at later stages of development. In ascidians, such as Ciona intestinalis, Brachyury is expressed exclusively in the notochord and does not exhibit an early pan-mesodermal pattern. Subtractive hybridization screens were recently used to identify potential Ciona Brachyury (Ci-Bra) target genes (Takahashi, H., Hotta, K., Erives, A., Di Gregorio, A., Zeller, R. W., Levine, M. and Satoh, N. (1999). Genes Dev. 13, 1519-1523). Of the genes that were identified in this screen, one corresponds to a new member of the tropomyosin superfamily, Ciona tropomyosin (Ci-trop). Here we show that Ci-trop is specifically expressed in the developing notochord beginning at gastrulation, and expression persists in the notochord during tailbud and tadpole stages. A 3 kb region of the Ci-trop 5'-flanking sequence was characterized via electroporation of lacZ fusion genes into fertilized Ciona eggs. A minimal, 114 bp enhancer was identified that is sufficient to direct the expression of a heterologous promoter in the notochord. DNA binding assays indicate that this enhancer contains two sets of low-affinity Brachyury half-sites, which are bound in vitro by a GST/Ci-Bra fusion protein. Deletion of the distal sites inactivates the notochord-specific staining pattern mediated by an otherwise normal Ci-trop/lacZ transgene. These results suggest that Ci-trop is a direct target gene of Ci-Bra and that Brachyury plays an immediate role in the cellular morphogenesis of the notochord.  (+info)

A nemaline myopathy mutation in alpha-tropomyosin causes defective regulation of striated muscle force production. (43/1370)

Nemaline myopathy (NM) is a rare autosomal dominant skeletal muscle myopathy characterized by severe muscle weakness and the subsequent appearance of nemaline rods within the muscle fibers. Recently, a missense mutation inTPM3, which encodes the slow skeletal alpha-tropomyosin (alphaTm), was linked to NM in a large kindred with an autosomal-dominant, childhood-onset form of the disease. We used adenoviral gene transfer to fully differentiated rat adult myocytes in vitro to determine the effects of NM mutant human alphaTm expression on striated muscle sarcomeric structure and contractile function. The mutant alphaTm was expressed and incorporated correctly into sarcomeres of adult muscle cells. The primary defect caused by expression of the mutant alphaTm was a decrease in the sensitivity of contraction to activating Ca(2+), which could help explain the hypotonia seen in NM. Interestingly, NM mutant alphaTm expression did not directly result in nemaline rod formation, which suggests that rod formation is secondary to contractile dysfunction and that load-dependent processes are likely involved in nemaline rod formation in vivo.  (+info)

Intramolecular crosslinking of tropomyosin via disulfide bond formation: evidence for chain register. (44/1370)

Rabbit skeletal muscle tropomyosin can be crosslinked in the native state by the use of 5,5'-dithiobis(2-nitrobenzoate), which forms disulfide bonds between the two subunits. Using polyacrylamide gel electrophoresis in sodium dodecyl sulfate we have shown that this crosslinking goes to completion over a wide range of protein concentration, ionic strength, and reagent concentration. Crosslinks are not formed in denaturing solvents such as sodium dodecyl sulfate and guanidine hydrochloride despite the fact that the same number of SH groups react as in the native state (2.3 +/- 0.2). The sedimentation coefficients of crosslinked and non-crosslinked samples are identical. Thus, crosslinks are formed between corresponding cysteines on different chains of the same molecule. This provides strong evidence for a model of chain interaction with both chains in register. Evidence has also been obtained that rabbit skeletal tropomyosin is composed only of alphaalpha and alphabeta subunits rather than a random mixture of chains.  (+info)

Major nonhistone proteins of rat liver chromatin: preliminary identification of myosin, actin, tubulin, and tropomyosin. (45/1370)

Two major nonhistone polypeptides from rat liver chromatin have been identified as myosin and actin. Preliminary observations indicate that three other chromatin polypeptides of molecular weights 50,000, 34,000, and 32,000 are tubulin and heavy and light tropomyosin, respectively. A sixth component of molecular weight 65,000 which has been purified and electrophoreses as a single band on sodium dodecyl sulfate-polyacrylamide gels may be composed in part of protease-digested myosin. These six polypeptides together account for as much as 38% of the nonhistone protein mass of chromatin in this tissue.  (+info)

Smooth muscle alpha-tropomyosin crosslinks to caldesmon, to actin and to myosin subfragment 1 on the muscle thin filament. (46/1370)

To obtain proximity information between tropomyosin (Tm) and caldesmon (CaD) on the muscle thin filament, we cloned gizzard alphaTm and created two single Cys mutants S56C/C190S (56Tm) and D100C/C190S (100Tm). They were labeled with benzophenone maleimide (BPM) and UV-irradiated on thin filaments. One chain of BPM-56Tm and two chains of BPM-100Tm crosslinked to CaD. Only BPM-100Tm crosslinked to actin in the absence and presence of CaD and binding of low ratios of myosin subfragment 1 (S1) prevented the crosslinking. Tm-S1 crosslinks were produced when actin.Tm was saturated with S1. Thus, CaD on the actin.Tm filament is located <10 A away from Tm amino acids 56 and 100; in the closed state of the actin.Tm filament, Tm residue 100 is located close to the actin surface and is moved further away in the S1-induced open state; in the open state, S1 binds close to Tm.  (+info)

Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. (47/1370)

Hypertrophic cardiomyopathy (HCM) is one of the most frequently occurring inherited cardiac disorders, affecting up to 1 in 500 of the population. Molecular genetic analysis has shown that HCM is a disease of the sarcomere, caused by mutations in certain contractile protein genes. To date seven disease-associated genes have been identified, those encoding beta-myosin heavy chain, both regulatory and essential myosin light chains, myosin binding protein-C, cardiac troponin T, cardiac troponin I and alpha-tropomyosin. Here we review the analyses of how these mutations affect the in vitro contractile protein function and the hypotheses derived to explain the development of the disease state.  (+info)

Functional analysis of human cardiac troponin by the in vitro motility assay: comparison of adult, foetal and failing hearts. (48/1370)

OBJECTIVE: Human cardiac development and heart failure are associated with altered troponin isoform expression and phosphorylation. As the functional effects of these changes in troponin are unknown, we isolated troponin from human foetal, normal adult and failing adult hearts and investigated their regulatory function. METHODS: Human cardiac troponin was assayed for regulatory function by in vitro motility assay and for protein content by SDS PAGE and immunoblotting. RESULTS: Human cardiac troponin regulated movement of actin-tropomyosin filaments over a bed of immobilised heavy meromyosin. At pCa 9, troponin from foetal and adult hearts reduced the fraction of filaments moving from 90% to less than 15% with a modest (25-30%) decrease in velocity. At pCa 5, troponin from normal adult hearts increased filament velocity by up to 47 +/- 3% with no change in the fraction of filaments moving. Foetal troponin increased velocity by only 4 +/- 6% and the effect of troponin from failing hearts was between these values at 31 +/- 5%. Foetal hearts showed different troponin I and T isoform expression compared with adult hearts. No differences in troponin isoform expression were demonstrated between normal and failing adult hearts. CONCLUSIONS: Functioning troponin and tropomyosin may be isolated from human heart and their properties investigated by in vitro motility assay. Both functional and isoform expression differences exist between foetal and adult cardiac troponin. The regulatory function of troponin from adults with end stage heart failure is different from normal adult troponin. These data suggest a role for altered troponin function in human cardiac development and heart failure.  (+info)