Mitogen-induced proliferation increases biotin uptake into human peripheral blood mononuclear cells. (57/10387)

We sought to determine whether the proliferation of immune cells affects the cellular uptake of the vitamin biotin. Peripheral blood mononuclear cells (PBMC) were isolated from healthy adults. The proliferation of PBMC was induced by either pokeweed lectin, concanavalin A, or phytohemagglutinin. When the medium contained a physiological concentration of [3H]biotin, nonproliferating PBMC accumulated 406 +/- 201 amol [3H]biotin. 10(6) cells-1. 30 min-1. For proliferating PBMC, [3H]biotin uptake increased to between 330 and 722% of nonproliferating values. Maximal transport rates of [3H]biotin in proliferating PBMC were also about four times greater than those in nonproliferating PBMC, suggesting that proliferation was associated with an increase in the number of biotin transporters on the PBMC membrane. The biotin affinities and specificities of the transporter for proliferating and nonproliferating PBMC were similar, providing evidence that the same transporter mediates biotin uptake in both states. [14C]urea uptake values for proliferating and nonproliferating PBMC were similar, suggesting that the increased [3H]biotin uptake was not caused by a global upregulation of transporters during proliferation. We conclude that PBMC proliferation increases the cellular accumulation of biotin.  (+info)

[3H]taurine and D-[3H]aspartate release from astrocyte cultures are differently regulated by tyrosine kinases. (58/10387)

Volume-dependent anion channels permeable for Cl- and amino acids are thought to play an important role in the homeostasis of cell volume. Astrocytes are the main cell type in the mammalian brain showing volume perturbations under physiological and pathophysiological conditions. We investigated the involvement of tyrosine phosphorylation in hyposmotic medium-induced [3H]taurine and D-[3H]aspartate release from primary astrocyte cultures. The tyrosine kinase inhibitors tyrphostin 23 and tyrphostin A51 partially suppressed the volume-dependent release of [3H]taurine in a dose-dependent manner with half-maximal effects at approximately 40 and 1 microM, respectively. In contrast, the release of D-[3H]aspartate was not significantly affected by these agents in the same concentration range. The inactive analog tyrphostin 1 had no significant effect on the release of both amino acids. The data obtained suggest the existence of at least two volume-dependent anion channels permeable to amino acids in astrocyte cultures. One of these channels is permeable to taurine and is under the control of tyrosine kinase(s). The other is permeable to both taurine and aspartate, but its volume-dependent regulation does not require tyrosine phosphorylation.  (+info)

Mechanism of the upregulation of erythropoietin-induced uptake clearance by the spleen. (59/10387)

Repeated administration of recombinant human erythropoietin (rhEPO) causes upregulation of receptor-mediated tissue uptake by the spleen (Kato, M., H. Kamiyama, A. Okazaki, K. Kumaki, Y. Kato, and Y. Sugiyama. J. Pharmacol. Exp. Ther. 283: 520-527, 1997). To discover whether such upregulation is due to an increase in target cells, the numbers of colony-forming unit erythroids (CFU-E) and burst-forming unit erythroids (BFU-E), the precursor of CFU-E, were measured in the spleen after rhEPO treatment. The uptake clearance of 125I-labeled rhEPO by the spleen was almost proportional to the number of CFU-E, suggesting that the upregulation is due to an increased number of CFU-E. When growth cells were metabolically labeled with [3H]thymidine in vivo, the radioactivity in bone marrow fell significantly after rhEPO treatment, whereas that in the spleen increased significantly. A cell-fractionation study using Percoll revealed that the radioactivity in the BFU-E fraction of splenic cells increased initially after rhEPO treatment, followed by an increase in radioactivity in the CFU-E fraction with a concomitant reduction in radioactivity in the BFU-E fraction. These results demonstrate that EPO stimulates the migration of BFU-E from bone marrow to spleen, followed by its differentiation into CFU-E in the spleen. In conclusion, the upregulation observed in the spleen is due to its stimulatory effect on the migration of BFU-E.  (+info)

Hyperlactatemia reduces muscle glucose uptake and GLUT-4 mRNA while increasing (E1alpha)PDH gene expression in rat. (60/10387)

An increased basal plasma lactate concentration is present in many physiological and pathological conditions, including obesity and diabetes. We previously demonstrated that acute lactate infusion in rats produced a decrease in overall glucose uptake. The present study was carried out to further investigate the effect of lactate on glucose transport and utilization in skeletal muscle. In chronically catheterized rats, a 24-h sodium lactate or bicarbonate infusion was performed. To study glucose uptake in muscle, a bolus of 2-deoxy-[3H]glucose was injected in basal condition and during euglycemic-hyperinsulinemic clamp. Our results show that hyperlactatemia decreased glucose uptake in muscles (i.e., red quadriceps; P < 0.05). Moreover in red muscles, both GLUT-4 mRNA (-30% in red quadriceps and -60% in soleus; P < 0.025) and protein (-40% in red quadriceps; P < 0.05) were decreased, whereas the (E1alpha)pyruvate dehydrogenase (PDH) mRNA was increased (+40% in red quadriceps; P < 0.001) in lactate-infused animals. PDH protein was also increased (4-fold in red gastrocnemius and 2-fold in red quadriceps). These results indicate that chronic hyperlactatemia reduces glucose uptake by affecting the expression of genes involved in glucose metabolism in muscle, suggesting a role for lactate in the development of insulin resistance.  (+info)

Effect of AMPK activation on muscle glucose metabolism in conscious rats. (61/10387)

The effect of AMP-activated protein kinase (AMPK) activation on skeletal muscle glucose metabolism was examined in awake rats by infusing them with 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR; 40 mg/kg bolus and 7.5 mg. kg-1. min-1 constant infusion) along with a variable infusion of glucose (49.1 +/- 2.4 micromol. kg-1. min-1) to maintain euglycemia. Activation of AMPK by AICAR caused 2-deoxy-D-[1,2-3H]glucose (2-DG) uptake to increase more than twofold in the soleus and the lateral and medial gastrocnemius compared with saline infusion and occurred without phosphatidylinositol 3-kinase activation. Glucose uptake was also assessed in vitro by use of the epitrochlearis muscle incubated either with AICAR (0.5 mM) or insulin (20 mU/ml) or both in the presence or absence of wortmannin (1.0 microM). AICAR and insulin increased muscle 2-DG uptake rates by approximately 2- and 2.7-fold, respectively, compared with basal rates. Combining AICAR and insulin led to a fully additive effect on muscle glucose transport activity. Wortmannin inhibited insulin-stimulated glucose uptake. However, neither wortmannin nor 8-(p-sulfophenyl)-theophylline (10 microM), an adenosine receptor antagonist, inhibited the AICAR-induced activation of glucose uptake. Electrical stimulation led to an about threefold increase in glucose uptake over basal rates, whereas no additive effect was found when AICAR and contractions were combined. In conclusion, the activation of AMPK by AICAR increases skeletal muscle glucose transport activity both in vivo and in vitro. This cellular pathway may play an important role in exercise-induced increase in glucose transport activity.  (+info)

Redox-dependent and redox-independent subcomponents of protein degradation in perfused myocardium. (62/10387)

The integration of proteolytic pathways with metabolism was investigated in perfused rat myocardium. After a 10-min incorporation period, the minute-to-minute release of [3H]leucine from myocardial proteins was measured in nonrecirculating effluent perfusate. The nontoxic pro-oxidant probe diamide (100 microM) or a supraphysiological concentration of the endogenous oxidative metabolite dehydroascorbic acid (200 microM) reversibly inhibited 75% of myocardial proteolysis consisting of several known subcomponents (redox dependent); however, 25% of proteolysis was diamide insensitive (redox independent). Decrease in extracellular glucose concentration from 10 to 0.1 mM strongly increased the potencies of minimally effective concentrations of diamide (10 microM) or dehydroascorbic acid (15 microM) by approximately 10-fold to the respective potencies maximally inhibiting proteolysis. The reversal of diamide action was also strongly dependent on the perfusate glucose concentration observed at 0.1, 0.2, 1.0 and 10 mM glucose. Proteolytic inhibition caused by diamide (100 microM) was not accompanied by change in basal tissue ATP content of 5 micromol/g wet wt. Conversely, nearly lethal 60% ATP depletion caused by sodium azide (0.4 mM) was not accompanied by change in total [3H]leucine release. Results indicate that a large proteolytic subcomponent (75%) is maintained by redox chains fed by glucose; however, there is no apparent linkage of this proteolysis to short-term ATP fluctuations. A distinct major proteolytic subcomponent (25%) does not vary in response to experimental intervention in either ATP content or redox chains.  (+info)

Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. (63/10387)

Exposure of conscious animals to environmental heat stress increases portal venous radical content. The nature of the observed heat stress-inducible radical molecules suggests that hyperthermia produces cellular hypoxic stress in liver and intestine. To investigate this hypothesis, conscious rats bearing in-dwelling portal venous and femoral artery catheters were exposed to normothermic or hyperthermic conditions. Blood gas levels were monitored during heat stress and for 24 h following heat exposure. Hyperthermia significantly increased arterial O2 saturation, splanchnic arterial-venous O2 difference, and venous PCO2, while decreasing venous O2 saturation and venous pH. One hour after heat exposure, liver glycogen levels were decreased approximately 20%. Two hours after heat exposure, the splanchnic arterial-venous O2 difference remained elevated in heat-stressed animals despite normal Tc. A second group of rats was exposed to similar conditions while receiving intra-arterial injections of the hypoxic cell marker [3H]misonidazole. Liver and intestine were biopsied, and [3H]misonidazole content was quantified. Heat stress increased tissue [3H]misonidazole retention 80% in the liver and 29% in the small intestine. Cellular [3H]misonidazole levels were significantly elevated in intestinal epithelial cells and liver zone 2 and 3 hepatocytes and Kupffer cells. This effect was most prominent in the proximal small intestine and small liver lobi. These data provide evidence that hyperthermia produces cellular hypoxia and metabolic stress in splanchnic tissues and suggest that cellular metabolic stress may contribute to radical generation during heat stress.  (+info)

Extracellular matrix deposition by primary human lung fibroblasts in response to TGF-beta1 and TGF-beta3. (64/10387)

Increased collagen and extracellular matrix (ECM) deposition within the lung is a characteristic feature of lung fibrosis. Transforming growth factor (TGF)-beta isoforms play a pivotal role in the production of collagen and ECM. In this study, we investigated the effects of TGF-beta1 and TGF-beta3 on the main processes controlling ECM deposition using primary human lung fibroblasts. We analyzed 1) collagen metabolism by [3H]proline incorporation, 2) matrix metalloproteinase (MMP) expression by substrate gel zymography, and 3) tissue inhibitor of metalloproteinases (TIMP) expression by Western blot analysis. TGF-beta1 and TGF-beta3 increased the percentage of secreted collagens in supernatants of primary fibroblasts from 8.0 +/- 1.2 (control) to 23.6 +/- 4.6 and 22.3 +/- 1.3%, respectively. The collagen percentage in deposited ECM was increased from 5.8 +/- 0.3 (control) to 9.0 +/- 0.5 and 8.8 +/- 0.5% by TGF-beta1 and TGF-beta3, respectively. Secretion of MMP-1 (interstitial collagenase) by fibroblasts was reduced by both TGF-beta isoforms, whereas secretion of MMP-2 (gelatinase A) was unaffected by either of the two isoforms. Both TGF-beta isoforms increased TIMP-1 protein expression, whereas TIMP-2 protein was decreased. We thus conclude that TGF-beta1 and TGF-beta3 are equally potent in increasing ECM deposition. Their fibrotic effect in lung fibroblasts results from 1) an increase in the secretion and deposition of total ECM and collagens, 2) a decrease in MMP-1 secretion, and 3) an increase of TIMP-1 expression.  (+info)