Evaluation of wheat-based thin stillage as a water source for growing and finishing beef cattle. (49/3819)

Two trials were conducted to evaluate the nutritional value of wheat-based thin stillage as a water source for cattle. In Trial 1, 20 large-framed steers were fed a basal diet based primarily on barley grain and barley silage, with ad libitum access to water or thin stillage at one of three DM concentrations (2, 4, and 6.7%) in a completely randomized design. The trial consisted of a 70-d growing period and a finishing phase. In Trial 2, total-tract nutrient digestibility coefficients of the basal diet and water treatments fed in the growing period were determined in a randomized complete block design using 12 medium-framed steers. The results showed that when only DMI from the basal diet was considered, there was a linear reduction (P<.01) in DMI and a linear improvement (P<.01) in the gain:feed ratio with no effect on daily gain as thin stillage DM concentration increased. No differences were detected in DMI or efficiency of gain when total DMI (basal diet and thin stillage) was considered. Carcass traits indicated a trend toward increased (P<.06) carcass fat with increasing thin stillage DM concentration. Results of Trial 2 indicated a linear improvement (P<.05) in apparent digestibility of DM, CP, NDF, and energy of the total diet (basal diet and thin stillage) as thin stillage DM concentration increased. We concluded that supplementing growing and finishing cattle with thin stillage reduced the amount of the basal diet required for gain and improved nutrient utilization.  (+info)

Feeding value of wheat-based thin stillage: in vitro protein degradability and effects on ruminal fermentation. (50/3819)

Two experiments were conducted to evaluate the nutritive value of wheat-based thin stillage as a fluid source for ruminants. In vitro CP degradability of thin stillage was estimated relative to canola meal and heated canola meal in a completely randomized design. Four ruminally cannulated steers were used in a double cross-over design to determine the effects of consuming thin stillage or water as drinking sources on ruminal fermentation traits. The in vitro CP degradability of thin stillage (55.4%) was lower (P<.05) than that of canola meal (59.4%) and higher than that of heated canola meal (31.6%). Ruminal pH for steers consuming thin stillage was higher (P<.05) at 1000 and 1100 and lower (P<.05) at 1900 and 2000 than that for steers consuming water. Total VFA followed a pattern that was the reverse of that reported for pH. Ruminal NH3 N levels were higher (P<.05) for steers fed thin stillage than for water-fed steers through most of the collection period. Ruminal fluid and particulate matter passage rates were not affected by treatment and averaged .165 and .06 /h, respectively. The amount of thin stillage and water that did not equilibrate with the ruminal fluid and, thus, was considered to bypass the rumen was estimated to be 51.9 and 59.2% of total fluid consumed, respectively. Feeding wheat-based thin stillage had no adverse effects on ruminal metabolism.  (+info)

Partial purification and characterization of two cytoplasmic DNA polymerases from ungerminated wheat. (51/3819)

Two DNA polymerases have been purified from the 105,000 x g supernatant of ungerminated wheat. The purification stages included: high speed centrifugation, salt fractionation, DEAE-cellulose chromatography, Sephadex G-150 filtration and phosphocellulose chromatography. Several properties of the two enzyme (called A and B according to the order of elution from the phosphocellulose column) have been studied. Enzyme A has a sedimentation coefficient of about 7 S, utilizes activated DNA and synthetic polydeoxynucleotides as well as poly rA-dT12, while B has a sedimentation coefficient of about 6.2 and uses only activated DNA and synthetic polydeoxynucleotides as templates. Other parameters like KCl effect, MnCl2 effect, optimum pH, etc. Allow us to distinguish clearly between both DNA polymerases.  (+info)

Isolation of a zeta class wheat glutathione S-transferase gene. (52/3819)

A new Zeta class glutathione S-transferases (GST) gene, pGST, has been cloned from wheat for the first time by the differential display PCR (DD-PCR) method. The genomic sequence of pGST, TA-GSTZ1, contains nine exons that encode a polypeptide of 213 amino acids and eight introns. The deduced amino acid sequence of TA-GSTZ1 as well as the exon:intron placement are more similar to the GSTs of the Zeta class than to the two wheat GSTs reported earlier. The pGST cDNA gene product expressed in Escherichia coli and purified by affinity chromatography showed typical Zeta class GST and glutathione peroxidase activities. Sequence polymorphism in the 3' untranslated region (UTR) of TA-GSTZ1 gene in wheat has been discovered. In this study, an 89 bp sequence is present in the 3' UTR of TA-GSTZ1gene in 16 wheat cultivars but absent in the other five. Although the biological importance of this polymorphism is unknown, it can be useful as a genetic marker in wheat breeding.  (+info)

A new class of enzyme acting on damaged ribosomes: ribosomal RNA apurinic site specific lyase found in wheat germ. (53/3819)

A new enzyme, which we named ribosomal RNA apurinic site specific lyase (RALyase), is described. The protein was found in wheat embryos and has a molecular weight of 50 625 Da. The enzyme specifically cleaves the phosphodiester bond at the 3' side of the apurinic site introduced by ribosome-inactivating proteins into the sarcin/ricin domain of 28S rRNA. The 3' and 5' ends of wheat 28S rRNA at the cleavage site are 5'-GUACG-alpha-hydroxy-alpha, beta-unsaturated aldehyde and pGAGGA-3', demonstrating that the enzyme catalyzes a beta-elimination reaction. The substrate specificity of the enzyme is extremely high: it acts only at the apurinic site in the sarcin/ricin domain of intact ribosomes, not on deproteinized rRNA or DNA containing apurinic sites. The amino acid sequences of five endopeptidase LysC-liberated peptides from the purified enzyme were determined and used to obtain a cDNA sequence. The open reading frame encodes a protein of 456 amino acids, and a homology search revealed a related rice protein. Similar enzyme activities were also found in other plants that express ribosome-inactivating proteins. We believe that RALyase is part of a complex self-defense mechanism.  (+info)

5-Methylcytosine distribution and genome organization in triticale before and after treatment with 5-azacytidine. (54/3819)

Triticale (2n=6x=42) is a hybrid plant including rye (R) and wheat (A and B) genomes. Using genomic in situ hybridization with rye DNA as a probe, we found the chromosomes of the R genome were not intermixed with the wheat chromosomes in 85% of nuclei. After treatment of seedlings with low doses of the drug 5-azacytidine (5-AC), leading to hypomethylation of the DNA, the chromosomes became intermixed in 60% of nuclei; the next generation showed intermediate organization. These results correlate with previous data showing that expression of R-genome rRNA genes, normally suppressed, is activated by 5-AC treatment and remains partially activated in the next generation. The distribution of 5-methylcytosine (5-mC) was studied using an antibody to 5-mC. Methylation was detected along the lengths of all chromosomes; there were some chromosome regions with enhanced and reduced methylation, but these were not located at consistent positions, nor were there differences between R and wheat genome chromosomes. After 5-AC treatment, lower levels of methylation were detected. After 5-AC treatment, in situ hybridization with rye genomic DNA sometimes showed micronuclei of rye origin and multiple translocations between wheat and rye chromosomes. Genomic DNA was analysed using methylation-sensitive restriction enzymes and, as probes, two rDNA sequences, two tandemly organised DNA sequences from rye (pSc200 and pSc250), and copia and the gypsy group retrotransposon fragments from rye and wheat. DNA extracted immediately after 5-AC treatment was cut more by methylation-sensitive restriction enzymes than DNA from untreated seedlings. Each probe gave a characteristic restriction fragment pattern, but rye- and wheat-origin probes behaved similarly, indicating that hypomethylation was induced in both genomes. In DNA samples from leaves taken 13-41 days after treatment, RFLP (Restriction Fragment Length Polymorphism) patterns were indistinguishable from controls and 5-AC treatments with all probes. Surprising differences in hybridization patterns were seen between DNA from root tips and leaves with the copia-fragment probes.  (+info)

Characterization of a DNA-binding protein implicated in transcription in wheat mitochondria. (55/3819)

To investigate the transcriptional apparatus in wheat mitochondria, mitochondrial extracts were subjected to column chromatography and protein fractions were analyzed by in vitro transcription and mobility shift assays. Fractions eluting from DEAE-Sephacel between 0.2 and 0.3 M KCl displayed DNA-binding activity and supported specific transcription initiated from a wheat cox2 promoter. The active DEAE-Sephacel pool was further resolved by chromatography on phosphocellulose. Fractions that exhibited DNA-binding activity and that stimulated both specific and nonspecific transcription in vitro were highly enriched in a 63-kDa protein (p63). From peptide sequence obtained from purified p63, a cDNA encoding the protein was assembled. The predicted amino acid sequence (612 amino acid residues, 69 kDa) contains a basic N-terminal targeting sequence expected to direct transport of the protein into mitochondria. The p63 sequence also features an acidic domain characteristic of transcriptional activation factors, as well as sequence blocks displaying limited similarity to positionally equivalent regions in sigma factors from eubacteria related to mitochondria. Recombinant p63 possesses DNA-binding activity, exhibiting an affinity for the core cox2 promoter element and upstream regions in gel shift assays and having the ability to enhance specific transcription in vitro. Transcripts encoding p63 are expressed at an early stage in the germination of isolated wheat embryos, in a temporal pattern parallelling that of newly synthesized precursors of cox2, a mitochondrial gene. Taken together, these data suggest a role for p63 in transcription in wheat mitochondria.  (+info)

In vitro-translated diphtheria toxin A chain inhibits translation in wheat germ extracts: analysis of biologically active, caspase-3-resistant diphtheria toxin mutants. (56/3819)

The diphtheria toxin A chain (DTA) is a potent cytocidal agent that inactivates elongation factor 2. This activity of DTA inhibits protein synthesis and rapidly leads to cell death through apoptosis. In this paper, we have developed a simple in vitro assay for DTA activity in which in vitro-translated DTA is used to inhibit the translation of proteins in wheat germ extracts. Inhibition of translation by DTA is dependent on cofactor NAD+, and the analysis of an attenuated DTA mutant indicates that this in vitro assay accurately reflects the in vivo activity of DTA. We have also identified aspartic acid at residue 8 (Asp-8) of DTA as a site of cleavage by the cell-death protease caspase-3. Cleavage of DTA by caspase-3 inactivates its ability to inhibit translation in wheat germ extracts. Conservative mutations at Asp-8 render DTA resistant to cleavage by caspase-3, but only slightly affect the ability of DTA to inhibit translation in vitro. Moreover, caspase-3-resistant DTA mutants are toxic in cells in tissue culture. The in vitro assay that we describe here will be useful for the rapid analysis of DTA activity and the development of DTA mutants with altered biological properties that may be of therapeutic value. Lastly, these studies serve as a prototype for the creation of caspase-resistant effector molecules.  (+info)