A new family of small, palmitoylated, membrane-associated proteins, characterized by the presence of a cysteine-rich hydrophobic motif. (17/1021)

We recently cloned the CHIC2 gene (previously BTL) by virtue of its involvement in a chromosomal translocation t(4;12)(q11;p13) occurring in acute myeloid leukemias. In this study we show that CHIC2 is a member of a highly conserved family of proteins characterized by the presence of a striking cysteine-rich hydrophobic (CHIC) motif. Our data illustrate that cysteines in this central CHIC motif are palmitoylated and that CHIC2 is associated with vesicular structures and the plasma membrane. The CHIC proteins thus resemble the cysteine string proteins, which function in regulated exocytosis.  (+info)

Carrier-mediated hepatobiliary transport of a novel antifolate, N-[4-[(2,4-dianninopteridine-6-yl)methyl]-3,4-dihydro-2H-1,4-benzothiazin-7-yl]ca rbonyl-L-homoglutamic acid, in rats. (18/1021)

The hepatic uptake and biliary excretion of a novel methotrexate derivative, N-[4-[(2,4-diamminopteridine-6-yl)methyl]-3,4-dihydro-2H-1,4-benzothiazin-7-yl]ca rbonyl-L-homoglutamic acid (MX-68), were examined in rats in vitro using isolated hepatocytes and bile canalicular membrane vesicles (CMVs), respectively. The uptake of MX-68 by isolated rat hepatocytes showed a saturable component (Km = 2.15 microM and Vmax = 2.34 pmol/min/mg of protein) and was inhibited by ATP-depletors and anionic compounds such as taurocholate and probenecid. [3H]MX-68 uptake was also inhibited by folate analogs such as methotrexate and 5CH3-tetrahydrofolate, but the effect of these compounds was slightly less than that of unlabeled MX-68. On replacing Na+ with choline, MX-68 uptake remained unchanged, whereas the methotrexate uptake was reduced. Uptake of MX-68 increased as the extracellular pH fell from 7.5 to 5.5. These results suggest that MX-68 is taken up via active transport systems. The uptake of MX-68 by CMVs prepared from normal rats exhibited clear ATP dependence, whereas ATP had only a minimal effect on the uptake by CMVs from Eisai-hyperbilirubinemic rats with a hereditary deficiency in canalicular multispecific organic anion transporter (cMOAT). The initial uptake rate of ATP-dependent MX-68 transport showed saturation with kinetic parameters similar to those of methotrexate. MX-68 inhibited the ATP-dependent transport of 2,4-dinitrophenyl-S-glutathione, a typical substrate for cMOAT, the inhibition constant (162 microM) being comparable with the Km of ATP-dependent MX-68 transport. These results suggest that the biliary excretion of MX-68 via the bile canalicular membrane is mediated mainly by cMOAT. In conclusion, active transport systems are involved in membrane penetration of MX-68 both at sinusoidal and canalicular sides in the liver, the latter being mainly involved with methotrexate (MTX) whereas the former differs partially from that for MTX.  (+info)

Uptake and accumulation of exogenous docosahexaenoic acid by Chlorella. (19/1021)

Tuna oil or its hydrolysate was added to a culture of Chlorella for its nutritional fortification as a feed for rotifer. Exogenous docosahexaenoic acid (DHA) in its free form was taken up by the cells of Chlorella vulgaris strain K-22 and by other strains, but tuna oil was not taken up by the cells. Accumulated DHA was found by electron microscopy in the cells in oil droplets. All strains of Chlorella used in these experiments took up exogenous DHA into the cells. It seems that the structure of the cell wall did not affect the uptake of DHA into the Chlorella cells.  (+info)

Twelve-transmembrane-segment (TMS) version (DeltaTMS VII-VIII) of the 14-TMS Tet(L) antibiotic resistance protein retains monovalent cation transport modes but lacks tetracycline efflux capacity. (20/1021)

A "Tet(L)-12" version of Tet(L), a tetracycline efflux protein with 14 transmembrane segments (TMS), was constructed by deletion of two central TMS. Tet(L)-12 catalyzed Na+/H+ antiport and antiport with K+ as a coupling ion as well as or better than wild-type Tet(L) but exhibited no tetracycline-Me2+/H+ antiport in Escherichia coli vesicles.  (+info)

Novel members of the human oxysterol-binding protein family bind phospholipids and regulate vesicle transport. (21/1021)

Oxysterol-binding proteins (OSBPs) are a family of eukaryotic intracellular lipid receptors. Mammalian OSBP1 binds oxygenated derivatives of cholesterol and mediates sterol and phospholipid synthesis through as yet poorly undefined mechanisms. The precise cellular roles for the remaining members of the oxysterol-binding protein family remain to be elucidated. In yeast, a family of OSBPs has been identified based on primary sequence similarity to the ligand binding domain of mammalian OSBP1. Yeast Kes1p, an oxysterol-binding protein family member that consists of only the ligand binding domain, has been demonstrated to regulate the Sec14p pathway for Golgi-derived vesicle transport. Specifically, inactivation of the KES1 gene resulted in the ability of yeast to survive in the absence of Sec14p, a phosphatidylinositol/phosphatidylcholine transfer protein that is normally required for cell viability due to its essential requirement in transporting vesicles from the Golgi. We cloned the two human members of the OSBP family, ORP1 and ORP2, with the highest degree of similarity to yeast Kes1p. We expressed ORP1 and ORP2 in yeast lacking Sec14p and Kes1p function and found that ORP1 complemented Kes1p function with respect to cell growth and Golgi vesicle transport, whereas ORP2 was unable to do so. Phenotypes associated with overexpression of ORP2 in yeast were a dramatic decrease in cell growth and a block in Golgi-derived vesicle transport distinct from that of ORP1. Purification of ORP1 and ORP2 for ligand binding studies demonstrated ORP1 and ORP2 did not bind 25-hydroxycholesterol but instead bound phospholipids with both proteins exhibiting strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate. In Chinese hamster ovary cells, ORP1 localized to a cytosolic location, whereas ORP2 was associated with the Golgi apparatus, consistent with our vesicle transport studies that indicated ORP1 and ORP2 function at different steps in the regulation of vesicle transport.  (+info)

Cutting edge: eotaxin elicits rapid vesicular transport-mediated release of preformed IL-4 from human eosinophils. (22/1021)

IL-4 release is important in promoting Th2-mediated allergic and parasitic immune responses. Although human eosinophils are potential sources of IL-4, physiologic mechanisms to elicit its release have not been established. By flow cytometry and microscopy, eosinophils from normal donors uniformly contained preformed IL-4. In contrast to cytolytic IL-4 release from calcium ionophore-activated eosinophils, eotaxin and RANTES, but not IFN-gamma, elicited IL-4 release by noncytotoxic mechanisms. With a dual Ab capture and detection immunofluorescent microscopic assay, IL-4 was released at discrete cell surface sites. IL-5 enhanced eotaxin-induced IL-4 release, which was mediated by G protein-coupled CCR3 receptors, detectable as early as 5 min and maximum within 1 h. IL-4 release was not diminished by transcription or protein synthesis inhibitors, but was suppressed by brefeldin A, an inhibitor of vesicle formation. Thus, CCR3-mediated signaling can rapidly mobilize IL-4 stored preformed in human eosinophils for release by vesicular transport to contribute to immune responses.  (+info)

A CCR5-dependent novel mechanism for type 1 HIV gp120 induced loss of macrophage cell surface CD4. (23/1021)

Type 1 HIV gp120 is especially effective in disrupting immune cell function because it is able to cause dysregulation of both infected and uninfected cells. We report a novel CCR5-dependent mechanism of gp120-induced CD4 loss from macrophages. An M-tropic gp120, using CCR5, is able to induce 70% loss of cell surface CD4 from macrophages within an hour. This cell surface CD4 loss is more substantial and rapid than the 20% loss observed with T-tropic gp120(IIIB) by 3 h. The rapid and substantial CD4 loss induced by M-tropic gp120 is not observed on macrophages homozygous for the ccr5Delta32 mutation, which fail to express cell surface CCR5. We have used confocal imaging to show that gp120 and CD4 are internalized together by a process resembling receptor-mediated endocytosis, and that both proteins enter HLA-DR containing compartments of the macrophage. We have also shown by semiquantitative RT-PCR that, in response to CD4 loss from the cell surface, mRNA for CD4 is up-regulated and the intracellular pool of CD4 increases. CCR5 mRNA levels are also increased. It is proposed that internalization of self and viral protein and increased pools of intracellular CD4 could modulate Ag presentation efficiencies and have implications for the induction and maintenance of both productive immune responses and self-tolerance.  (+info)

Sequestration of aggregated LDL by macrophages studied with freeze-etch electron microscopy. (24/1021)

The detailed morphology of macrophages involved in the uptake and intracellular processing of low density lipoprotein (LDL) and, ultimately, formation of macrophage-derived foam cells of atherosclerotic lesions has long fascinated investigators. This study examined localization of LDL in subcellular compartments of macrophage-derived intimal foam cells in cardiac valves isolated from rabbits by diet-induced hypercholesterolemia and, as an in vitro model of formation of foam cells, in cultured human monocyte-macrophages incubated for 2;-120 h with aggregated LDL produced by vortexing or phospholipase C lipolysis. The quasi-three-dimensional morphology of macrophages involved in endocytosis was preserved by ultrarapid freezing and freeze-etch microscopy in conjunction with thin-section electron microscopy. This approach produced unique images of subcellular compartments in human monocyte-macrophages involved in the uptake and processing of aggregated LDL with a clarity not previously reported. Three-dimensional ultrastructural analyses revealed a complex network of coated and uncoated vesicles, surface-connected saclike compartments, and endosomal/lysosomal compartments including the labyrinth of vesicular/tubular lysosomes all enmeshed in the microtubular, microfilament cytoskeletal network. These dynamic views of subcellular structures at the high resolution of the electron microscope provide an additional framework to better understand how lipoprotein particles are transported into, and processed within, macrophages during foam cell formation in atherogenesis.  (+info)