The PsbY protein is not essential for oxygenic photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. (65/2249)

A tetra-manganese cluster in the photosystem II (PSII) pigment-protein complex plays a critical role in the photosynthetic oxygen evolution process. PsbY, a small membrane-spanning polypeptide, has recently been suggested to provide a ligand for manganese in PSII (A.E. Gau, H.H. Thole, A. Sokolenko, L. Altschmied, R.G. Herrmann, E.K. Pistorius [1998] Mol Gen Genet 260: 56-68). We have constructed a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 with an inactivated psbY gene (sml0007). Southern-blot and polymerase chain reaction analysis showed that the mutant had completely segregated. However, the DeltapsbY mutant cells grew normally under photoautotrophic conditions. Moreover, growth of the wild-type and mutant cells were similar under high-light photoinhibition conditions, as well as in media without any added manganese, calcium, or chloride, three required inorganic cofactors for the oxygen-evolving complex of PSII. Analysis of steady-state and flash-induced oxygen evolution, fluorescence induction, and decay kinetics, and thermoluminescence profiles demonstrated that the DeltapsbY mutant cells have normal photosynthetic activities. We conclude that the PsbY protein in Synechocystis 6803 is not essential for oxygenic photosynthesis and does not provide an important binding site for manganese in the oxygen-evolving complex of PSII.  (+info)

Characterization of the endogenous plasmid from Pseudomonas alcaligenes NCIB 9867: DNA sequence and mechanism of transfer. (66/2249)

The endogenous plasmid pRA2 from Pseudomonas alcaligenes NCIB 9867 was determined to have 32,743 bp with a G+C content of 59.8%. Sequence analysis predicted a total of 29 open reading frames, with approximately half of them contributing towards the functions of plasmid replication, mobilization, and stability. The Pac25I restriction-modification system and two mobile elements, Tn5563 and IS1633, were physically localized. An additional eight open reading frames with unknown functions were also detected. pRA2 was genetically tagged with the OmegaStr(r)/Spc(r) gene cassette by homologous recombination. Intrastrain transfer of pRA2-encoded genetic markers between isogenic mutants of P. alcaligenes NCIB 9867 were observed at high frequencies (2.4 x 10(-4) per donor). This transfer was determined to be mediated by a natural transformation process that required cell-cell contact and was completely sensitive to DNase I (1 mg/ml). Efficient transformation was also observed when pRA2 DNA was applied directly onto the cells, while transformation with foreign plasmid DNAs was not observed. pRA2 could be conjugally transferred into Pseudomonas putida RA713 and KT2440 recipients only when plasmid RK2/RP4 transfer functions were provided in trans. Plasmid stability analysis demonstrated that pRA2 could be stably maintained in its original host, P. alcaligenes NCIB 9867, as well as in P. putida RA713 after 100 generations of nonselective growth. Disruption of the pRA2 pac25I restriction endonuclease gene did not alter plasmid stability, while the pRA2 minireplicon exhibited only partial stability. This indicates that other pRA2-encoded determinants could have significant roles in influencing plasmid stability.  (+info)

Opa expression correlates with elevated transformation rates in Neisseria gonorrhoeae. (67/2249)

Neisseria gonorrhoeae is naturally competent for DNA transformation. Under most conditions encountered in vivo, gonococci express one or more opacity (Opa) proteins on their surfaces. Recently, it was shown that DNA preferentially binds to the surfaces of Opa-expressing organisms compared to those of isogenic Opa-negative strains, presumably due to the numerous cationic residues in the predicted surface-exposed loops of the Opa protein. This study examined whether Opa-DNA interactions actually influence DNA transformation of the gonococcus. The data show that Opa-expressing gonococci are more efficient recipients of DNA for transformation and are more susceptible to exogenous DNase I treatment at early stages during the DNA transformation process than non-Opa expressors. Furthermore, inhibition of the transformation process was demonstrable for Opa(+) populations when either nonspecific DNA or the polyanion heparin was used. Overall, the data suggest that Opa expression, with its presumptive positive surface charge contribution, promotes DNA transformation by causing a more prolonged sequestration of donor DNA at the cell surface, which translates into more efficient transformation over time.  (+info)

Uptake of 2-oxoglutarate in Synechococcus strains transformed with the Escherichia coli kgtP gene. (68/2249)

A number of cyanobacteria from different taxonomic groups exhibited very low levels of uptake of 2-[U-(14)C]oxoglutarate. Synechococcus sp. strain PCC 7942 was transformed with DNA constructs carrying the Escherichia coli kgtP gene encoding a 2-oxoglutarate permease and a kanamycin resistance gene cassette. The Synechococcus sp. strains bearing the kgtP gene incorporated 2-oxoglutarate into the cells through an active transport process. About 75% of the radioactivity from the 2-[U-(14)C]oxoglutarate taken up that was recovered in soluble metabolites was found as glutamate and glutamine. 2-Oxoglutarate was, however, detrimental to the growth of a Synechococcus sp. strain bearing the kgtP gene.  (+info)

Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. (69/2249)

In order to evaluate the impact of an urban effluent on antibiotic resistance of freshwater bacterial populations, water samples were collected from the Arga river (Spain), upstream and downstream from the wastewater discharge of the city of Pamplona. Strains of Enterobacteriaceae (representative of the human and animal commensal flora) (110 isolates) and Aeromonas (typically waterborne bacteria) (118 isolates) were selected for antibiotic susceptibility testing. Most of the Aeromonas strains (72%) and many of the Enterobacteriaceae (20%) were resistant to nalidixic acid. Singly nalidixic acid-resistant strains were frequent regardless of the sampling site for Aeromonas, whereas they were more common upstream from the discharge for enterobacteria. The most common resistances to antibiotics other than quinolones were to tetracycline (24.3%) and beta-lactams (20.5%) for Enterobacteriaceae and to tetracycline (27.5%) and co-trimoxazole (26.6%) for Aeromonas. The rates of these antibiotic resistances increased downstream from the discharge at similar degrees for the two bacterial groups; it remained at high levels for enterobacteria but decreased along the 30-km study zone for Aeromonas. Genetic analysis of representative strains demonstrated that these resistances were mostly (enterobacteria) or exclusively (Aeromonas) chromosomally mediated. Moreover, a reference strain of Aeromonas caviae (CIP 7616) could not be transformed with conjugative R plasmids of enterobacteria. Thus, the urban effluent resulted in an increase of the rates of resistance to antibiotics other than quinolones in the riverine bacterial populations, despite limited genetic exchanges between enterobacteria and Aeromonas. Quinolone resistance probably was selected by heavy antibiotic discharges of unknown origin upstream from the urban effluent.  (+info)

Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. (70/2249)

The genetic systems of bacteria that have the ability to use organic pollutants as carbon and energy sources can be adapted to create bacterial biosensors for the detection of industrial pollution. The creation of bacterial biosensors is hampered by a lack of information about the genetic systems that control production of bacterial enzymes that metabolize pollutants. We have attempted to overcome this problem through modification of DmpR, a regulatory protein for the phenol degradation pathway of Pseudomonas sp. strain CF600. The phenol detection capacity of DmpR was altered by using mutagenic PCR targeted to the DmpR sensor domain. DmpR mutants were identified that both increased sensitivity to the phenolic effectors of wild-type DmpR and increased the range of molecules detected. The phenol detection characteristics of seven DmpR mutants were demonstrated through their ability to activate transcription of a lacZ reporter gene. Effectors of the DmpR derivatives included phenol, 2-chlorophenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4-dimethylphenol, 2-nitrophenol, and 4-nitrophenol.  (+info)

Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. (71/2249)

To elucidate the biological significance of dead bacterial cells in soil to the intra- and interspecies transfer of gene fragments by natural transformation, we have exposed the kanamycin-sensitive recipient Acinetobacter sp. strain BD413(pFG4) to lysates of the kanamycin-resistant donor bacteria Acinetobacter spp., Pseudomonas fluorescens, and Burkholderia cepacia. Detection of gene transfer was facilitated by the recombinational repair of a partially (317 bp) deleted kanamycin resistance gene in the recipient bacterium. The investigation revealed a significant potential of these DNA sources to transform Acinetobacter spp. residing both in sterile and in nonsterile silt loam soil. Heat-treated (80 degrees C, 15 min) cell lysates were capable of transforming strain BD413 after 4 days of incubation in sterile soil and for up to 8 h in nonsterile soil. Transformation efficiencies obtained in vitro and in situ with the various lysates were similar to or exceeded those obtained with conventionally purified DNA. The presence of cell debris did not inhibit transformation in soil, and the debris may protect DNA from rapid biological inactivation. Natural transformation thus provides Acinetobacter spp. with an efficient mechanism to access genetic information from different bacterial species in soil. The relatively short-term biological activity (e.g., transforming activity) of chromosomal DNA in soil contrasts the earlier reported long-term physical stability of DNA, where fractions have been found to persist for several weeks in soil. Thus, there seems to be a clear difference between the physical and the functional significance of chromosomal DNA in soil.  (+info)

Efficient production of artificially designed gelatins with a Bacillus brevis system. (72/2249)

Artificially designed gelatins comprising tandemly repeated 30-amino-acid peptide units derived from human alphaI collagen were successfully produced with a Bacillus brevis system. The DNA encoding the peptide unit was synthesized by taking into consideration the codon usage of the host cells, but no clones having a tandemly repeated gene were obtained through the above-mentioned strategy. Minirepeat genes could be selected in vivo from a mixture of every possible sequence encoding an artificial gelatin by randomly ligating the mixed sequence unit and transforming it into Escherichia coli. Larger repeat genes constructed by connecting minirepeat genes obtained by in vivo selection were also stable in the expression host cells. Gelatins derived from the eight-unit and six-unit repeat genes were extracellularly produced at the level of 0.5 g/liter and easily purified by ammonium sulfate fractionation and anion-exchange chromatography. The purified artificial gelatins had the predicted N-terminal sequences and amino acid compositions and a solgel property similar to that of the native gelatin. These results suggest that the selection of a repeat unit sequence stable in an expression host is a shortcut for the efficient production of repetitive proteins and that it can conveniently be achieved by the in vivo selection method. This study revealed the possible industrial application of artificially designed repetitive proteins.  (+info)