Determination of iron, manganese and zinc in water samples by flame atomic absorption spectrophotometry after preconcentration with solid-phase extraction onto Ambersorb 572. (65/924)

A solid-phase extraction method for the preconcentration of Fe, Mn and Zn on a column containing Ambersorb 572 has been developed, and the determination of Fe, Mn and Zn in water using a flame atomic absorption spectrophotometer (FAAS) has been performed. The optimum preconcentration parameters of the procedure have been determined. The effect of the pH, complexing agent, amount of adsorbent, flow rate, concentration and volume of the elution solution and interfering ions on the recovery of the analytes were investigated. The recoveries of Fe, Mn and Zn were 99 +/- 3%, 98 +/- 3% and 99 +/- 3% at the 95% confidence level, respectively, under the optimum conditions. Fe, Mn and Zn were preconcentrated up to 50, 100, 200, respectively. The limits of detection of Fe, Mn and Zn are 2.5, 0.68 and 0.24 micrograms l-1, respectively. The adsorption capacity of the adsorbent was found to be 10.9, 13.1 and 21.5 mg g-1 for Fe, Mn and Zn, respectively. The method has been applied to the determination of these metal ions in tap-water and river-water samples. The precision and the accuracy of the method is very good. The relative standard deviation and the relative error are lower than 4%.  (+info)

Health effects of fossil fuel combustion products: report of a workshop. (66/924)

Judgemental positions are presented on research priorities in regard to the health effects from stationary sources of fossil fuel combustion products. Hopefully, they can provide guidance for efforts to ensure that national energy needs are met with minimum environmental and economic burdens on the public. The major areas include epidemiological studies, controlled biological studies, mutagenesis and carcinogenesis, trace elements, monitoring and analysis.  (+info)

Levels of toxic metals in marine organisms collected from Southern California coastal waters. (67/924)

Emission of toxic trace metals into southern California coastal waters has resulted in the extensive accumulation of the elements within marine sediments. The current study was undertaken to evaluate concentrations of trace metals in bottom-dwelling marine fauna collected from two sampling areas. Analyses carried out on muscle samples of the dover sole (Microstomus pacificus) and the crab (Cancer anthonyi) by proton-induced x-ray emission analysis showed considerable concentrations of arsenic and selenium. Samples of gonads, digestive gland, and muscle from the crab Mursia gaudichaudii analyzed by atomic absorption spectroscopy showed elemental concentrations in muscle similar to the crab Cancer anthonyi and much higher metal levels in gonad and digestive gland. These findings suggest the need for further studies concerning the relationship between emission of metals into the marine environment and their abundance in marine fauna.  (+info)

Mass balance of trace elements in Walker branch watershed: relation to coal-fired steam plants. (68/924)

A mass balance study of trace element flows at the TVA Allen Steam Plant at Memphis showed that most of the released Hg, some Se, and probably most Cl and Br are discharged to the atmosphere as gases. The elements As, Cd, Cu, Ga, Mo, Pb, Sb, Se, and Zn were concentrated in fly ash compared to slag and were more concentrated in the ash discharged through the stack than in that collected by the precipitator, while Al, Ba, Ca, Ce, Co, Eu, Fe, Hf, K, La, Mg, Mn, Rb, Sm, Sr, Ta, Th, and Ti showed little preferential partitioning between the slag and the collected or discharged fly ash. The elements Cr, Cs, Na, Ni, U, and V exhibited behavior intermediate between the latter two groups. This information about stack emissions of trace elements from the Allen Plant was used to estimate the likely range of air concentrations and input (dry and wet deposition) to the Walker Branch Watershed. The watershed, which is on the ERDA reservation at Oak Ridge, is within 20 km of three coal-fired steam plants, two in the TVA system and one belonging to ERDA. The estimated input values are compared to measurements of Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn in wet precipitation falling on the watershed during 1973 and 1974. Dry deposition of these elements could not be measured directly but estimates indicated that this could be of the same order of magnitude as the rainwater input. A six-month mass balance indicated that the watershed efficiently retains Pb (97-98% of the atmospheric input,) Cu (82-84%), while Cr (69%), Mn (57%), Zn (73%), and Hg (69%) are less well retained.  (+info)

Endothelin-1-mediated alteration of metallothionein and trace metals in the liver and kidneys of chronically diabetic rats. (69/924)

In the present study, the role of endothelin-1 (ET-1) on alterations of hepatic and renal metallothionein (MT) and trace metals (Zn, Cu, and Fe) were investigated in streptozotocin (STZ)-induced diabetic rats. Diabetic rats, age- and sex-matched controls, as well as control and diabetic animals on a dual ETA/ETB receptor blocker, bosentan, were investigated after 6 months of follow-up. MT was measured by cadmium-heme assay. Metals were measured by atomic absorption spectrometer. ET-1 mRNA was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) technique. Hepatic and renal ET-1 mRNA was increased in diabetic rats as compared to control rats, along with an increase in both hepatic and renal MT proteins. The increased hepatic MT protein level was associated with decreases in hepatic Cu and Fe, whereas increased renal MT was associated with increases in renal Cu and Fe accumulation. Zn levels were unaltered in both organs in diabetic rats. Bosentan treatment partially prevented the increase in MT levels in both liver and kidney, along with reduced serum creatinine and increased urinary creatinine levels. Further bosentan treatment corrected the increased Cu and Fe levels in the kidney in diabetic rats, but reduced hepatic Cu and Fe levels. No significant effects of bosentan treatment on nondiabetic rats were observed. The data suggest that the possible effects of ET antagonism in diabetes may be mediated via changes in MT and trace metals.  (+info)

Interactions of trace metals in mouse and rat tissues; zinc, chromium, copper, and manganese with 13 other elements. (70/924)

Tissues of rats and mice fed a nonessential metal in drinking water for life were analyzed for the essential metals chromium, copper, manganese and zinc. The study involved 505 rats and 843 mice. Livers, lungs, hearts, kidneys and spleens were pooled in groups according to age at death, averaging 5 for rats and 8 for mice, in order to provide adequate sample weight. Copper was significantly higher in livers of rats fed tin, germanium, niobium and zirconium than in controls. Similarly, niobium was associated with deposition of manganese in heart and zinc deposition in liver. Chromium levels were depressed in heart, kidney and spleen by germanium. In mice the greatest effects occurred when indium and rhodium were fed, all four essential trace metals exhibiting raised levels principally in kidney but also in heart and spleen. Chromium levels were raised in all organs but heart when hexavalent chromium was fed. From these data it is apparent that the ingestion of a nonessential metal can enhance the retention of an essential trace metal, perhaps thus avoiding toxicity from the nonessential one.  (+info)

TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. (71/924)

Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) >> Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  (+info)

Major-to-ultratrace elements in bone-marrow fluid as determined by ICP-AES and ICP-MS. (72/924)

The major-to-ultratrace elements in human bone-marrow fluid were determined by ICP-AES (inductively coupled plasma atomic emission spectrometry), and ICP-MS (inductively coupled plasma mass spectrometry). The bone-marrow fluid sample was centrifuged prior to acid digestion to exclude the bone piece from bone marrow, and then digested with nitric acid. As a result, 20 elements could be determined over the concentration range from 1610 microg g(-1) for Na to 0.00043 microg g(-1) for W. It was found that Fe, Zn and Sb were enriched by ca. 264-, 7- and 15-fold, respectively, in bone-marrow fluid, compared to those in human blood serum. Alkali metals (K, Rb, Cs), except for Na, were also significantly enriched in bone-marrow fluid. Furthermore, the concentrations of various elements, such as Fe, P, Al, Zn, Cu, Se, Zr, Sn, Ag and W, were significantly higher than those in open seawater.  (+info)