Apparent ileal and total-tract nutrient digestion by pigs as affected by dietary nondigestible oligosaccharides. (1/924)

The effects of two types of nondigestible oligosaccharides (NDO), fructooligosaccharides (FOS), and transgalactooligosaccharides (TOS) were studied on growing and weanling pigs' nutrient digestion. Dietary NDO were included at the expense of purified cellulose. Twenty-five 57-d-old growing pigs, averaging 15.9+/-.6 kg on d 0 of the experiment, were fed a corn-based control diet or the control with 6.8 or 13.5 g of FOS/kg or 4.0 or 8.0 g of TOS/kg (five pigs per diet). Feces were collected on d 28 to 32, and small-intestinal digesta were collected (slaughter technique) on d 42 to 47 of the experiment. Feeds, feces, and digesta were analyzed for DM, inorganic matter, CP, ether extract, and crude fiber. Dietary NDO did not significantly affect apparent fecal and small intestinal digestion of nutrients in growing pigs. After being fed a NDO-free diet through d 10 after weaning, 38-d-old weanling pigs (n = 20), averaging 10.4+/-.8 kg on d 0 of the experiment, were fed a control diet (based on cornstarch, casein, and oat husk meal) or the control with 10 or 40 g of FOS or TOS/kg (four pigs per diet). Feces and urine were collected on d 13 to 17, and ileal digesta were collected via a postvalve T-cecum cannula on d 33 to 37 of the experiment. Feeds, feces, and digesta were analyzed for DM, inorganic matter, CP, ether extract, starch, NDF, ADF, ADL, Ca, P, Mg, Fe, Cu, and Zn. Nonstarch neutral-detergent soluble carbohydrates (NNSC) completed the mass balance for the carbohydrates. Urine was analyzed for N and minerals. The apparent fecal digestion of NNSC increased in the NDO-supplemented diets. The TOS-fed pigs tended (P<.10) to have a higher apparent fecal digestion of CP than the FOS-fed and control pigs but excreted more N via the urine (P<.01). Nitrogen and mineral balances were not affected. The FOS was nearly completely degraded prececally. Mean fiber digestion was lower at the fecal compared with the ileal level, as was the extent of NDO effects. This indicates that fiber digestion requires more than 2 wk to adapt to dietary NDO. Apparent ileal digestion of hemicellulose increased for the NDO-supplemented diets (P<.05), but that of NNSC decreased (P<.001). Thus, under the well-controlled conditions of this experiment, dietary NDO hardly affected nutrient digestion in well-kept growing and weanling pigs. However, digestion of dietary nonstarch carbohydrates may be affected.  (+info)

Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. (2/924)

A relationship has been reported between trace elements and diabetes mellitus. This study evaluated the role of such a relationship in 83 patients with non-insulin dependent diabetes mellitus (40 men and 43 women), with a mean duration of diabetes of 3.9 +/- 3.6 years. Patients with nephropathy were excluded. Thirty healthy non-diabetic subjects were studied for comparative analysis. Subjects were subdivided into obese and non-obese. Diabetic subjects were also subdivided into controlled and uncontrolled groups; control was based on fasting blood glucose and serum fructosamine levels. Plasma copper, zinc and magnesium levels were analysed using a GBC 902 double beam atomic absorption spectrophotometer. Plasma zinc and magnesium levels were comparable between diabetic and non-diabetic subjects, while copper levels were significantly elevated (p < 0.01) in diabetic patients. Age, sex, duration and control of diabetes did not influence copper, zinc, or magnesium concentrations. We conclude that zinc and magnesium levels are not altered in diabetes mellitus, but the increased copper levels found in diabetics in our study may merit further investigation of the relationship between copper and non-insulin dependent diabetes mellitus.  (+info)

Effects of supplementation of organic and inorganic combinations of copper, cobalt, manganese, and zinc above nutrient requirement levels on postpartum two-year-old cows. (3/924)

The objective of this study was to determine whether a combination of Cu, Co, Mn, and Zn in an organic or inorganic form fed at higher than nutrient recommendations for 2-yr-old cows from calving to breeding would affect pregnancy rate, calving date, calf performance, and cow liver and serum mineral concentrations. Crossbred 2-yr-old cows were used after calving in 1994 (n = 127) and 1995 (n = 109). Cows were blocked by calving date to one of three treatments: 1) no supplemental minerals (CTL), 2) organic minerals (ORG), or 3) inorganic minerals (ING). Minerals were fed for the same daily intake for both organic and inorganic treatments: Cu (125 mg), Co (25 mg), Mn (200 mg), and Zn (360 mg). Cows were individually fed a mineral-protein supplement with grass hay from calving (February-March) to before breeding (May 15). Hay intakes were calculated using chromium oxide boluses to determine fecal output. Fecal excretion of minerals was calculated following trace element analysis of feces. Liver biopsies were obtained before calving, after calving (start of supplementation), at the end of supplementation, and in midsummer. Over 2 yr, more cows did not become pregnant (P < .01) in ORG (11/78) and ING (11/78) treatments than in CTL (0/80) treatments. A treatment x year interaction was found for day of conception. Cows in the ORG group conceived later (P < .01) than cows in the ING or CTL groups in 1994. In 1995, there was no difference (P > .10) in day of conception among groups. Liver Zn and Mn concentrations were not different (P > .10) and Cu concentrations increased (P < .01) for the ORG and ING groups. Cows in the ORG and ING groups had higher (P < .01) concentrations of Cu, Mn, and Zn in the feces than the CTL cows. Trace elements in the feces did not differ for ORG and ING groups. Results indicate that combinations of Cu, Co, Mn, and Zn fed at higher levels than are required reduced reproductive performance.  (+info)

Comparative absorption of calcium sources and calcium citrate malate for the prevention of osteoporosis. (4/924)

Anthropologically speaking, humans were high consumers of calcium until the onset of the Agricultural Age, 10,000 years ago. Current calcium intake is one-quarter to one-third that of our evolutionary diet and, if we are genetically identical to the Late Paleolithic Homo sapiens, we may be consuming a calcium-deficient diet our bodies cannot adjust to by physiologic mechanisms. Meta-analyses of calcium and bone mass studies demonstrate supplementation of 500 to 1500 mg calcium daily improves bone mass in adolescents, young adults, older men, and postmenopausal women. Calcium citrate malate has high bioavailability and thus has been the subject of calcium studies in these populations. Positive effects have been seen in prepubertal girls, adolescents, and postmenopausal women. The addition of trace minerals and vitamin D in separate trials has improved the effect of calcium citrate malate on bone density and shown a reduction of fracture risk.  (+info)

Effects of stair-step nutrition and trace mineral supplementation on attainment of puberty in beef heifers of three sire breeds. (5/924)

A study was conducted to evaluate the influence of nutrition and sire breed on age at puberty and first lactation milk yield in crossbred beef heifers. After weaning, 208 heifers sired by Hereford, Limousin, or Piedmontese bulls were assigned to either a control (CG) or stair-step gain (SSG) dietary regimen plus a mineral supplement with or without Cu, Zn, and Mn top-dressed onto the feed. Heifers on the SSG regimen were fed a diet intended to supply energy to support gains at a rate of 120% of the CG diet for 55 d and then were switched to a diet formulated to produce an ADG at 70% of the rate of the CG diet for 84 d. They then switched back to the 120% diet for the last 30 d before breeding. Total weight gain and overall rate of gain did not differ among dietary treatments. Hereford- and Limousin-sired heifers gained at similar rates, and Piedmontese-sired heifers gained an average of .10 kg/d slower than the other two sire breed groups. During one period, Piedmontese-sired heifers on the CG diet gained .19 kg/d faster ( P < . 01) when supplemented with mineral than when not. During that same period, there was no influence of mineral supplementation on weight gains for Hereford- or Piedmontese-sired heifers on the high SSG diet, but Limousin-sired heifers tended (P = .07) to gain faster (1.00 vs .85 kg/d) when supplemented with Cu, Zn, and Mn than when not. Piedmontese-sired heifers reached puberty at the earliest age (P = .03), followed by Hereford- and then Limousin-sired heifers. There were no treatment effects on milk yield at an average of 70 d of lactation. However, at approximately 120 d of lactation, Piedmontese-sired heifers were producing less milk (P < .05) than Limousin- but not Hereford-sired heifers. Hereford-sired heifers had lower (P < .05) plasma Cu concentrations than Piedmontese-sired heifers. There were no treatment effects on plasma Zn concentrations. Heifers sired by bulls of breeds that differ in potential muscularity differed in growth, reproduction, milk yield, and plasma mineral concentrations, but dietary treatments resulted in little to no differences in these variables.  (+info)

Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. (6/924)

OBJECTIVES: We sought to investigate the possible pathogenetic role of myocardial trace elements (TE) in patients with various forms of cardiac failure. BACKGROUND: Both myocardial TE accumulation and deficiency have been associated with the development of heart failure indistinguishable from an idiopathic dilated cardiomyopathy. METHODS: Myocardial and muscular content of 32 TE has been assessed in biopsy samples of 13 patients (pts) with clinical, hemodynamic and histologic diagnosis of idiopathic dilated cardiomyopathy (IDCM), all without past or current exposure to TE. One muscular and one left ventricular (LV) endomyocardial specimen from each patient, drawn with metal contamination-free technique, were analyzed by neutron activation analysis and compared with 1) similar surgical samples from patients with valvular (12 pts) and ischemic (13 pts) heart disease comparable for age and degree of LV dysfunction; 2) papillary and skeletal muscle surgical biopsies from 10 pts with mitral stenosis and normal LV function, and 3) LV endomyocardial biopsies from four normal subjects. RESULTS: A large increase (>10,000 times for mercury and antimony) of TE concentration has been observed in myocardial but not in muscular samples in all pts with IDCM. Patients with secondary cardiac dysfunction had mild increase (< or = 5 times) of myocardial TE and normal muscular TE. In particular, in pts with IDCM mean mercury concentration was 22,000 times (178,400 ng/g vs. 8 ng/g), antimony 12,000 times (19,260 ng/g vs. 1.5 ng/g), gold 11 times (26 ng/g vs. 2.3 ng/g), chromium 13 times (2,300 ng/g vs. 177 ng/g) and cobalt 4 times (86,5 ng/g vs. 20 ng/g) higher than in control subjects. CONCLUSIONS: A large, significant increase of myocardial TE is present in IDCM but not in secondary cardiac dysfunction. The increased concentration of TE in pts with IDCM may adversely affect mitochondrial activity and myocardial metabolism and worsen cellular function.  (+info)

Trace elements and electrolytes in human resting mixed saliva after exercise. (7/924)

OBJECTIVES: Exercise is known to cause changes in the concentration of salivary components such as amylase, Na, and Cl. The aim of this investigation was to evaluate the effect of physical exercise on the levels of trace elements and electrolytes in whole (mixed) saliva. METHODS: Forty subjects performed a maximal exercise test on a cycle ergometer. Samples of saliva were obtained before and immediately after the exercise test. Sample concentrations of Fe, Mg, Sc, Cr, Mn, Co, Cu, Zn, Se, Sr, Ag, Sb, Cs, and Hg were determined by inductively coupled plasma mass spectrometry and concentrations of Ca and Na by atomic absorption spectrometry. RESULTS: After exercise, Mg and Na levels showed a significant increase (p < 0.05) while Mn levels fell (p < 0.05). Zn/Cu molar ratios were unaffected by exercise. CONCLUSIONS: Intense physical exercise induced changes in the concentrations of only three (Na, Mg, and Mn) of the 16 elements analysed in the saliva samples. Further research is needed to assess the clinical implications of these findings.  (+info)

Effects of weight loss and exercise on the distribution of lead and essential trace elements in rats with prior lead exposure. (8/924)

We studied the effects of weight loss and non-weight-bearing exercise (swimming) on blood and organ lead and essential metal concentrations in rats with prior lead exposure. Nine-week-old female Sprague-Dawley rats (n = 37) received lead acetate in their drinking water for 2 weeks, followed by a 4-day latency period without lead exposure. Rats were then randomly assigned to one of six treatment groups: weight maintenance with ad libitum feeding, moderate weight loss with 20% food restriction, and substantial weight loss with 40% food restriction, either with or without swimming. Blood lead concentrations were measured weekly. The rats were euthanized after a 4-week period of food restriction, and the brain, liver, kidneys, quadriceps muscle, lumbar spinal column bones, and femur were harvested for analysis for lead, calcium, copper, iron, magnesium, and zinc using atomic absorption spectrophotometry. Both swimming and nonswimming rats fed restricted diets had consistently higher blood lead concentrations than the ad libitum controls. Rats in the substantial weight loss group had higher organ lead concentrations than rats in the weight maintenance group. Rats in the moderate weight loss group had intermediate values. There were no significant differences in blood and organ lead concentrations between the swimming and nonswimming groups. Organ iron concentrations increased with weight loss, but those of the other metals studied did not. Weight loss also increased hematocrits and decreased bone density of the nonswimming rats. The response of lead stores to weight loss was similar to that of iron stores because both were conserved during food restriction in contrast to decreased stores of the other metals studied. It is possible that weight loss, especially rapid weight loss, could result in lead toxicity in people with a history of prior excessive lead exposure.  (+info)