A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. (41/4733)

The oncoproteins P3k (homolog of the catalytic subunit of class IA phosphoinositide 3-kinase) and Akt (protein kinase B) induce oncogenic transformation of chicken embryo fibroblasts. The transformed cells show constitutive phosphorylation of the positive regulator of translation p70S6 kinase (S6K) and of the eukaryotic initiation factor 4E-BP1 binding protein (4E-BP1), a negative regulator of translation. Phosphorylation activates S6K and inactivates 4E-BP1. A mutant of Akt that retains kinase activity but does not induce phosphorylation of S6K or of 4E-BP1 fails to transform chicken embryo fibroblasts, suggesting a correlation between the oncogenicity of Akt and phosphorylation of S6K and 4E-BP1. The macrolide antibiotic rapamycin effectively blocks oncogenic transformation induced by either P3k or Akt but does not reduce the transforming activity of 11 other oncoproteins. Rapamycin inhibits the kinase mTOR, an important regulator of translation, and this inhibition requires binding of the antibiotic to the immunophilin FKBP12. Displacement of rapamycin from FKBP12 relieves the inhibition of mTOR and also restores P3k-induced transformation. These data are in accord with the hypothesis that transformation by P3k or Akt involves intervention in translational controls.  (+info)

Downregulation of Bim, a proapoptotic relative of Bcl-2, is a pivotal step in cytokine-initiated survival signaling in murine hematopoietic progenitors. (42/4733)

Two distinct signaling pathways regulate the survival of interleukin-3 (IL-3)-dependent hematopoietic progenitors. One originates from the membrane-proximal portion of the cytoplasmic domain of the IL-3 receptor (betac chain), which is shared by IL-3 and granulocyte-macrophage colony-stimulating factor and is involved in the regulation of Bcl-x(L) through activation of STAT5. The other pathway emanates from the distal region of the betac chain and overlaps with downstream signals from constitutively active Ras proteins. Although the latter pathway is indispensable for cell survival, its downstream targets remain largely undefined. Here we show that the expression of Bim, a member of the BH3-only subfamily of cell death activators, is downregulated by IL-3 signaling through either of two major Ras pathways: Raf/mitogen-activated protein kinase and the phosphatidylinositol 3-kinase/mammalian target of rapamycin. Akt/phosphokinase B does not appear to play a significant role in this regulatory cascade. Bim downregulation has important implications for cell survival, since enforced expression of this death activator at levels equivalent to those induced by cytokine withdrawal led to apoptosis even in the presence of IL-3. We conclude that Bim is a pivotal molecule in cytokine regulation of hematopoietic cell survival.  (+info)

Intracellular signals that control cell proliferation in mammalian balance epithelia: key roles for phosphatidylinositol-3 kinase, mammalian target of rapamycin, and S6 kinases in preference to calcium, protein kinase C, and mitogen-activated protein kinase. (43/4733)

In fish, amphibians, and birds, the loss of hair cells can evoke S-phase entry in supporting cells and the production of new cells that differentiate as replacement hair cells and supporting cells. Recent investigations have shown that supporting cells from mammalian vestibular epithelia will proliferate in limited numbers after hair cells have been killed. Exogenous growth factors such as glial growth factor 2 enhance this proliferation most potently when tested on vestibular epithelia from neonates. In this study, the intracellular signaling pathways that underlie the S-phase entry were surveyed by culturing epithelia in the presence of pharmacological inhibitors and activators. The results demonstrate that phosphatidylinositol 3-kinase is a key element in the signaling cascades that lead to the proliferation of cells in mammalian balance epithelia in vitro. Protein kinase C, mammalian target of rapamycin, mitogen-activated protein kinase, and calcium were also identified as elements in the signaling pathways that trigger supporting cell proliferation.  (+info)

Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. (44/4733)

BACKGROUND: Augmented protein translation by insulin involves activation of eukaryotic initiation factor 4E (eIF4E) that follows release of eIF4E from a heterodimeric complex by phosphorylation of its inhibitory binding protein, 4E-BP1. We examined insulin regulation of 4E-BP1 phosphorylation in murine proximal tubular epithelial cells. METHODS AND RESULTS: Insulin (1 nmol/L) increased de novo protein synthesis by 58 +/- 11% (P < 0.001). Insulin also augmented 4E-BP1 phosphorylation and phosphatidylinositol 3-kinase (PI 3-kinase) activity in antiphosphotyrosine immunoprecipitates. This could be prevented by PI 3-kinase inhibitors, Wortmannin, and LY294002. Insulin also activated Akt that lies downstream of PI 3-kinase. Rapamycin abrogated 4E-BP1 phosphorylation in response to insulin, suggesting involvement of mammalian target of rapamycin (mTOR), a kinase downstream of Akt. Insulin-stimulated phosphorylation of 4E-BP1 was also inhibited by PD098059, implying involvement of Erk-1/-2 mitogen-activated protein (MAP) kinase. An increase in Erk-1/-2 type MAP kinase activity by insulin was directly confirmed in an immunokinase assay and was found to be PI 3-kinase dependent. CONCLUSIONS: In proximal tubular epithelial cells, insulin augments 4E-BP1 phosphorylation, which is PI 3-kinase and mTOR dependent. The requirement for Erk-1/-2 MAP kinase activation for 4E-BP1 phosphorylation by insulin suggests a cross-talk between PI 3-kinase and Erk-1/-2-type MAP kinase pathways.  (+info)

Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. (45/4733)

Recent findings have demonstrated that the branched-chain amino acid leucine can activate the translational regulators, phosphorylated heat- and acid-stable protein regulated by insulin (PHAS-I) and p70 S6 kinase (p70S6k), in an insulin-independent and rapamycin-sensitive manner through mammalian target of rapamycin (mTOR), although the mechanism for this activation is undefined. It has been previously established that leucine-induced insulin secretion by beta-cells involves increased mitochondrial metabolism by oxidative decarboxylation and allosteric activation of glutamate dehydrogenase (GDH). We now show that these same intramitochondrial events that generate signals for leucine-induced insulin exocytosis are required to activate the mTOR mitogenic signaling pathway by beta-cells. Thus, a minimal model consisting of leucine and glutamine as substrates for oxidative decarboxylation and an activator of GDH, respectively, confirmed the requirement for these two metabolic components and mimicked closely the synergistic interactions achieved by a complete complement of amino acids to activate p70s6k in a rapamycin-sensitive manner. Studies using various leucine analogs also confirmed the close association of mitochondrial metabolism and the ability of leucine analogs to activate p70s6k. Furthermore, selective inhibitors of mitochondrial function blocked this activation in a reversible manner, which was not associated with a global reduction in ATP levels. These findings indicate that leucine at physiological concentrations stimulates p70s6k phosphorylation via the mTOR pathway, in part, by serving both as a mitochondrial fuel and an allosteric activator of GDH. Leucine-mediated activation of protein translation through mTOR may contribute to enhanced beta-cell function by stimulating growth-related protein synthesis and proliferation associated with the maintenance of beta-cell mass.  (+info)

A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. (46/4733)

Tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) by the insulin receptor permits this docking protein to interact with signaling proteins that promote insulin action. Serine phosphorylation uncouples IRS-1 from the insulin receptor, thereby inhibiting its tyrosine phosphorylation and insulin signaling. For this reason, there is great interest in identifying serine/threonine kinases for which IRS-1 is a substrate. Tumor necrosis factor (TNF) inhibited insulin-promoted tyrosine phosphorylation of IRS-1 and activated the Akt/protein kinase B serine-threonine kinase, a downstream target for phosphatidylinositol 3-kinase (PI 3-kinase). The effect of TNF on insulin-promoted tyrosine phosphorylation of IRS-1 was blocked by inhibition of PI 3-kinase and the PTEN tumor suppressor, which dephosphorylates the lipids that mediate PI 3-kinase functions, whereas constitutively active Akt impaired insulin-promoted IRS-1 tyrosine phosphorylation. Conversely, TNF inhibition of IRS-1 tyrosine phosphorylation was blocked by kinase dead Akt. Inhibition of IRS-1 tyrosine phosphorylation by TNF was blocked by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a downstream target of Akt. mTOR induced the serine phosphorylation of IRS-1 (Ser-636/639), and such phosphorylation was inhibited by rapamycin. These results suggest that TNF impairs insulin signaling through IRS-1 by activation of a PI 3-kinase/Akt/mTOR pathway, which is antagonized by PTEN.  (+info)

p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. (47/4733)

The relationship between G(1) checkpoint function and rapamycininduced apoptosis was examined using two human rhabdomyosarcoma cell lines, Rh1 and Rh30, that express mutated p53 alleles. Serum-starved tumor cells became apoptotic when exposed to rapamycin, but were completely protected by expression of a rapamycin-resistant mutant mTOR. Exposure to rapamycin (100 ng/ml) for 24 h significantly increased the proportion of Rh1 and Rh30 cells in G(1) phase, although there were no significant changes in expression of cyclins D1, E, or A in drug-treated cells. To determine whether apoptosis was associated with continued slow progression through G(1) to S phase, cells were exposed to rapamycin for 24 h, then labeled with bromodeoxyuridine (BrdUrd). Histochemical analysis showed that >90% of cells with morphological signs of apoptosis had incorporated BRDURD: To determine whether restoration of G(1) arrest could protect cells from rapamycin-induced apoptosis, cells were infected with replication-defective adenovirus expressing either p53 or p21(CIP1). Infection of Rh30 cells with either Ad-p53 or Ad-p21, but not control virus (Ad-beta-gal), induced G(1) accumulation, up-regulation of p21(CIP1), and complete protection of cells from rapamycin-induced apoptosis. Within 24 h of infection of Rh1 cells with Ad-p21, expression of cyclin A was reduced by >90%. Similar results were obtained after Ad-p53 infection of Rh30 cells. Consistent with these data, incorporation of [(3)H]thymidine or BrdUrd into DNA was significantly inhibited, as was cyclin-dependent kinase 2 activity. These data indicate that rapamycin-induced apoptosis in tumor cells is a consequence of continued G(1) progression during mTOR inhibition and that arresting cells in G(1) phase, by overexpression of p53 or p21(CIP1), protects against apoptosis. The response to rapamycin was next examined in wild-type or murine embryo fibroblasts nullizygous for p53or p21(CIP1). Under serum-free conditions, rapamycin-treated wild-type MEFs showed no increase in apoptosis compared to controls. In contrast, rapamycin significantly induced apoptosis in cells deficient in p53 ( approximately 2.4-fold) or p21(CIP1) ( approximately 5.5-fold). Infection of p53(-/-) MEFs with Ad-p53 or Ad-p21 completely protected against rapamycin-induced apoptosis. Under serum-containing conditions, rapamycin inhibited incorporation of BrdUrd significantly more in wild-type murine embryo fibroblasts (MEFs) than in those lacking p53 or p21(CIP1). When BrdUrd was added 24 h after rapamycin, almost 90% and 70% of cells lacking p53 or p21(CIP1), respectively, incorporated nucleoside. In contrast, only 19% of wild-type cells incorporated BrdUrd in the presence of rapamycin. Western blot analysis of cyclin levels showed that rapamycin had little effect on levels of cyclins D1 or E in any MEF strain. However, cyclin A was reduced to very low levels by rapamycin in wild-type cells, but remained high in cells lacking p53 or p21(CIP1). Taken together, the data suggest that p53 cooperates in enforcing G(1) cell cycle arrest, leading to a cytostatic response to rapamycin. In contrast, in tumor cells, or MEFs, having deficient p53 function the response to this agent may be cell cycle progression and apoptosis.  (+info)

Zinc stimulates the activity of the insulin- and nutrient-regulated protein kinase mTOR. (48/4733)

Recent studies indicate that zinc activates p70 S6 kinase (p70(S6k)) by a mechanism involving phosphatidylinositol 3-kinase (PI 3-kinase) and Akt (protein kinase B). Here it is shown that phenanthroline, a zinc and heavy metal chelator, inhibited both amino acid- and insulin-stimulated phosphorylation of p70(S6k). Both amino acid and insulin activations of p70(S6k) involve a rapamycin-sensitive step that involves the mammalian target of rapamycin (mTOR, also known as FRAP and RAFT). However, in contrast to insulin, amino acids activate p70(S6k) by an unknown PI 3-kinase- and Akt-independent mechanism. Thus the effects of chelator on amino acid activation of p70(S6k) were surprising. For this reason, we tested the hypothesis that zinc directly regulates mTOR activity, independently of PI 3-kinase activation. In support of this, basal and amino acid stimulation of p70(S6k) phosphorylation was increased by zinc addition to the incubation media. Furthermore, the protein kinase activities of mTOR immunoprecipitated from rat brain lysates were stimulated two- to fivefold by 10-300 microM Zn2+ in the presence of an excess of either Mn2+ or Mg2+, whereas incubation with 1,10-phenanthroline had no effect. These findings indicate that Zn2+ regulates, but is not absolutely required for, mTOR protein kinase activity. Zinc also stimulated a recombinant human form of mTOR. The stimulatory effects of Zn2+ were maximal at approximately 100 microM but decreased and became inhibitory at higher physiologically irrelevant concentrations. Micromolar concentrations of other divalent cations, Ca2+, Fe2+, and Mn2+, had no effect on the protein kinase activity of mTOR in the presence of excess Mg2+. Our results and the results of others suggest that zinc acts at multiple steps in amino acid- and insulin cell-signaling pathways, including mTOR, and that the additive effects of Zn2+ on these steps may thereby promote insulin and nutritional signaling.  (+info)