PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. (41/3916)

The protein product of the Toll-like receptor (TLR) 4 gene has been implicated in the signal transduction events induced by lipopolysaccharide (LPS). In mice, destructive mutations of Tlr4 impede the normal response to LPS and cause a high susceptibility to Gram-negative infection. Expression of TLR4 mRNA in humans is restricted to a small number of cell types, including LPS-responsive myeloid cells, B-cells, and endothelial cells. To investigate the molecular basis for TLR4 expression in cells of myeloid origin, we cloned the human TLR4 gene and analyzed its putative 5'-proximal promoter. In transient transfections a region of only 75 base pairs upstream of the major transcription initiation site was sufficient to induce maximal luciferase activity in THP-1 cells. The sequence of this region is similar in human and mouse TLR4 genes and lacks a TATA box, typical Sp1-sites or CCAAT box sequences. Instead, it contains consensus-binding sites for Ets family transcription factors, octamer-binding factors, and a composite interferon response factor/Ets motif. The activity of the promoter in macrophages was strictly dependent on the integrity of both half sites of the composite interferon response factor/Ets motif, which was constitutively bound by the myeloid and B-cell-specific transcription factor PU.1 and interferon consensus sequence-binding protein. These results indicate that the two tissue-restricted transcription factors PU.1 and interferon consensus sequence-binding protein participate in the basal regulation of human TLR4 in myeloid cells. Cloning of the human TLR4 gene provides a basis for further investigation of the possible impact of genetic variations on the susceptibility to infection and sepsis.  (+info)

Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. (42/3916)

A missense mutation in the cytoplasmic domain of the Toll-like receptor-4 (TLR-4) has been identified as the defect responsible for lipopolysaccharide (LPS) hyporesponsiveness in C3H/HeJ mice. TLR-4 and TLR-2 have recently been implicated in LPS signaling in studies where these receptors were overexpressed in LPS non-responsive 293 human embryonic kidney cells. However, the signaling role of TLR-4 or TLR-2 in human cells with natural LPS response remains largely undefined. Here we show that human dermal microvessel endothelial cells (HMEC) and human umbilical vein endothelial cells express predominantly TLR-4 but very weak TLR-2 and respond vigorously to LPS but not to Mycobacterium tuberculosis 19-kDa lipoprotein. Transient transfection of non-signaling mutant forms of TLR-4 and anti-TLR-4 monoclonal antibody inhibited LPS-induced NF-kappaB activation in HMEC, while a monoclonal antibody against TLR-2 was ineffective. In contrast to LPS responsiveness, the ability of HMEC to respond to 19-kDa lipoprotein correlated with the expression of TLR-2. Transfection of TLR-2 into HMEC conferred responsiveness to 19-kDa lipoprotein. These data indicate that TLR-4 is the LPS signaling receptor in HMEC and that human endothelial cells (EC) express predominantly TLR-4 and weak TLR-2, which may explain why they do not respond to 19-kDa lipoprotein. The differential expression of TLRs on human EC may have important implications in the participation of vascular EC in innate immune defense mechanisms against various infectious pathogens, which may use different TLRs to signal.  (+info)

Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. (43/3916)

Toll is a Drosophila gene essential for ontogenesis and antimicrobial resistance. Several hortologues of Toll have been identified and cloned in vertebrates, namely Toll-like receptors (TLR). Human TLR are a growing family of molecules involved in innate immunity. TLR are structurally characterized by a cytoplasmic Toll/interleukin-1R (TIR) domain and by extracellular leucine-rich repeats. TLR characterized so far activate the MyD88/IRAK signaling cascade, which bifurcates and leads to NF-kappaB and c-Jun/ATF2/TCF activation. Genetic, gene transfer, and dominant-negative approaches have involved TLR family members (TLR2 and TLR4) in lipopolysaccharide recognition and signaling. Accumulating evidence suggests that some TLR molecules are also involved in signaling receptor complexes that recognize components of gram-positive bacteria and mycobacteria. However, the definitive role of other TLR is still lacking. A systematic approach has been used to determine whether different human leukocyte populations selectively or specifically expressed TLR mRNA. Based on expression pattern, TLR can be classified as ubiquitous (TLR1), restricted (TLR2, TLR4, and TLR5), and specific (TLR3). Expression and regulation of distinct though overlapping ligand recognition patterns may underlie the existence of a numerous, seemingly redundant, TLR family. Alternately, the expression of a TLR in a single cell type may indicate a specific role for this molecule in a restricted setting.  (+info)

The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. (44/3916)

The interleukin-1 (IL-1) receptor/Toll-like receptor (TLR) superfamily is a recently defined and expanding group of receptors that participate in host responses to injury and infection. The superfamily is defined by the Toll/IL-1 receptor (TIR) domain, which occurs in the cytosolic region of family members, and is further subdivided into two groups based on homology to either the Type I IL-1 receptor or Drosophila Toll receptor extracellular domain. The former group includes the receptor for the important Th1 cytokine IL-18, and T1/ST2, which may have a role in Th2 cell function. The latter group includes six mammalian TLRs, including TLR2 and TLR4, that largely mediate the host response to gram-positive and gram-negative bacteria, respectively. Whether bacterial products are actual ligands for TLRs, or whether they generate ligands via as yet unidentified pattern recognition receptors, has yet to be determined. Signaling pathways activated via the TIR domain trigger the activation of downstream kinases, and transcription factors such as NF-kappaB, and involve the adaptor protein MyD88, which itself contains a TIR domain.  (+info)

Toll-like receptors confer responsiveness to lipopolysaccharide from Porphyromonas gingivalis in human gingival fibroblasts. (45/3916)

Gingival fibroblasts produce proinflammatory cytokines in response to lipopolysaccharide (LPS) from periodontopathic bacteria. Recently it has become evident that the human homologue of Drosophila Toll can transduce intracellular signaling by LPS stimulation. Toll-like receptors (TLRs) have been identified in myeloid cells; however, their role in nonmyeloid cells such as gingival fibroblasts has not been fully elucidated. Here, we report that human gingival fibroblasts constitutively express TLR2 and TLR4 and that their levels of expression are increased by stimulation with LPS from Porphyromonas gingivalis. Upregulated expression of interleukin-6 gene and protein in fibroblasts stimulated with LPS is inhibited by anti-TLR4 antibody. These findings suggest that TLRs may confer responsiveness to LPS in gingival fibroblasts.  (+info)

Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. (46/3916)

In this study, the effect of in vitro endotoxin tolerance on LPS-induced mitogen-activated protein kinase activation, transcription factor induction, and cytokine, chemokine, and Toll-like receptor (TLR) 2 and 4 gene expression, as well as the involvement of TNF and IL-1 signaling pathways in tolerance, were examined. Pretreatment of mouse macrophages with LPS inhibited phosphorylation of the extracellular signal-regulated kinases, c-Jun NH2-terminal kinases, and p38 kinase; degradation of I-kappaBalpha (inhibitory protein that dissociates from NF-kappaB) and I-kappaBbeta; and activation of the transcription factors NF-kappaB and AP-1 in response to subsequent LPS stimulation. These changes were accompanied by suppression of LPS-induced expression of mRNA for GM-CSF, IFN-gamma-inducible protein-10, KC, JE/monocyte chemoattractant protein-1, macrophage-inflammatory protein-1beta, and macrophage-inflammatory protein-2, with concurrent inhibition of chemokine secretion. In contrast to control cells, endotoxin-tolerant macrophages exhibited an increased basal level of TLR2 mRNA, and failed to increase levels of TLR2 mRNA or to down-regulate TLR4 gene expression upon restimulation with LPS. As judged by transcription factor activation, LPS and IL-1 were found to induce a state of cross-tolerance against each other, while no such reciprocal effect was seen for LPS and TNF-alpha. In addition, macrophages from TNFR I/II double knockout mice were LPS tolerizable, and blocking of endogenous TNF-alpha with TNFR-Fc fusion protein did not affect the capacity of LPS to tolerize macrophages. These data extend our understanding of LPS-signaling mechanisms that are inhibited in endotoxin-tolerized macrophages and suggest that endotoxin tolerance might result from impaired expression and/or functions of common signaling intermediates involved in LPS and IL-1 signaling.  (+info)

Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. (47/3916)

Members of the Toll-like receptor (TLR) family probably play a fundamental role in pathogen recognition and activation of innate immunity. The present study used a systematic approach to analyze how different human leukocyte populations express specific transcripts for the first five characterized TLR family members. TLR1 was expressed in all leukocytes examined, including monocytes, polymorphonuclear leukocytes, T and B cells, and NK cells. In contrast TLR2, TLR4, and TLR5 were expressed in myelomonocytic elements. Exposure to bacterial products, such as LPS or lipoarabinomannan, or to proinflammatory cytokines increased TLR4 expression in monocytes and polymorphonuclear leukocytes, whereas IL-10 blocked this effect. TLR3 was only expressed in human dendritic cells (DC) wherein maturation induced by bacterial products or cytokines was associated with reduced expression. TLR3 mRNA expression was detected by in situ hybridization in DC and lymph nodes. These results demonstrate that TLR1 through TLR5 mRNAs are differentially expressed and regulated in human leukocytes. In particular, expression of TLR3 transcripts is restricted to DC that are the only elements which express the full TLR repertoire. These data suggest that TLR can be classified based on expression pattern as ubiquitous (TLR1), restricted (TLR2, TLR4, and TLR5 in myelomonocytic cells), and specific (TLR3 in DC) molecules.  (+info)

The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. (48/3916)

The central regulatory role of the adipocyte in whole body energy homeostasis is well established. However, recent findings suggest that preadipocytes and adipocytes may play an important physiological role in the regulation of both the innate and adaptive immune response. To systematically characterize the molecular machinery of the adipocyte that mediates the recognition of pathogens, we have focused our analysis on the recently identified Toll-like receptors (TLRs). These receptors have been implicated as mediators of the cellular response to bacterial lipopolysacharides (LPSs). Here, we report the cloning and functional characterization of mouse TLR-2 from 3T3-L1 adipocytes. TLR-2 synthesis is strongly induced in the adipocyte by LPS, TNFalpha, and the yeast cell wall extract zymosan. TLR-2 undergoes a lengthy intracellular maturation process with a half-life of exit from the ER of approximately 3 h. Furthermore, LPS treatment of adipocytes results in dramatic changes at the level of gene expression, including the synthesis of a distinct set of secretory proteins such as interleukin-6. Our studies demonstrate the presence of a fully intact pathway of innate immunity in the adipocyte that can be activated by LPS binding to the cell surface and results in the secretion of immunomodulatory molecules.  (+info)