Effects on the human serum lipoprotein profile of beta-glucan, soy protein and isoflavones, plant sterols and stanols, garlic and tocotrienols. (1/95)

The effects of beta-glucan, soy protein, isoflavones, plant sterols and stanols, garlic and tocotrienols on serum lipoproteins have been of great interest the last decade. From a critical review of the literature, it appeared that recent studies found positive as well as no effects of beta-glucan from oats on serum LDL cholesterol concentrations. These conflicting results may suggest that the cholesterol-lowering activity of products rich in oat beta-glucan depends on factors, such as its viscosity in the gastrointestinal tract, the food matrix and/or food processing. The effects of beta-glucan from barley or yeast on the lipoprotein profile are promising, but more human trials are needed to further substantiate these effects. It is still not clear whether the claimed hypocholesterolemic effects of soy can be attributed solely to the isoflavones. Several studies found no changes in serum LDL cholesterol concentrations after consumption of isolated soy isoflavones (without soy protein), indicating that a combination of soy protein and isoflavones may be needed for eliciting a cholesterol-lowering effect of soy. Therefore, the exact (combination of) active ingredients in soy products need to be identified. The daily consumption of 2-3 g of plant sterols or stanols reduces LDL cholesterol concentrations by 9-14%. It has been demonstrated that functional foods enriched with plant sterols and stanols are effective in various population groups, and in combination with cholesterol-lowering diets or drugs. Whether garlic or garlic preparations can be used as a lipid-lowering agent is still uncertain. It is important to characterize the active components in garlic and their bioavailability after ingestion. It is not very likely that tocotrienols from palm oil or rice bran oil have favorable effects on the human serum lipoprotein profile.  (+info)

Tocotrienols are needed for normal bone calcification in growing female rats. (2/95)

In this study the effects of vitamin E deficiency and supplementation on bone calcification were determined using 4-month-old female Sprague-Dawley rats. The rats weighed between 180 and 200 g. The study was divided in three parts. In experiment I the rats were given normal rat chow (RC, control group), a vitamin E deficient (VED) diet or a 50% vitamin E deficient (50%VED) diet. In experiment 2 the rats were given VED supplemented with 30 mg/kg palm vitamin E (PVE30), 60 mg/kg palm vitamin E (PVE60) or 30 mg/kg pure alpha-tocopherol (ATF). In experiment 3 the rats were fed RC and given the same supplements as in experiment 2. The treatment lasted 8 months. Vitamin E derived from palm oil contained a mixture of ATF and tocotrienols. Rats on the VED and 50%VED diets had lower bone calcium content in the left femur compared to the RC group (91.6 +/- 13.3 mg and 118.3 +/- 26.0 mg cf 165.7 +/- 15.2 mg; P < 0.05) and L5 vertebra (28.3 +/- 4.0 mg and 39.5 +/- 6.2 mg compared with 51.4 +/- 5.8 mg; P < 0.05). Supplementing the VED group with PVE60 improved bone calcification in the left femur (133.6 +/- 5.0 mg compared with 91.6 +/- 13.3 mg; P < 0.05) and L5 vertebra (41.3 +/- 3.3 mg compared with 28.3 +/- 4.0 mg; P < 0.05) while supplementation with PVE30 improved bone calcium content in the L5 vertebra (35.6 +/- 3.1 mg compared with 28.3 +/- 4.0 mg; P < 0.05). However, supplementation with ATF did not change the lumbar and femoral bone calcium content compared to the VED group. Supplementing the RC group with PVE30, PVE60 or ATF did not cause any significant changes in bone calcium content. In conclusion, vitamin E deficiency impaired bone calcification. Supplementation with the higher dose of palm vitamin E improved bone calcium content, but supplementation with pure ATF alone did not. This effect may be attributed to the tocotrienol content of palm vitamin E. Therefore, tocotrienols play an important role in bone calcification.  (+info)

Tocotrienol levels in various tissues of Sprague-Dawley rats after intragastric administration of tocotrienols. (3/95)

A tocotrienol (T3) mixture was intragastricaly administered to Sprague-Dawley rats, and the T3 levels in various tissues were measured 0, 4, 8 and 24 hr after the administration. In blood clots, brain, thymus, testes, vice-testes and muscles, T3 homologues were not detected at all. In epididymal adipose, renal adipose, subcutaneous adipose and brown adipose tissues and in the heart, the T3 levels were maintained or increased for 24 hr after the administration. In the serum, liver, mesenteric lymph node, spleen and lungs, the T3 levels were highest 8 hr after the T3 administration. These results suggest that the distribution and metabolism of T3 in the rat vary considerably among different tissues.  (+info)

Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. (4/95)

The metabolism of alpha- and gamma-tocotrienol was investigated in HepG2 cells. Metabolites were identified by HPLC and gas chromatography/mass spectrometry. gamma-Tocotrienol was degraded to gamma-CEHC (carboxyethyl hydroxychroman), gamma-CMBHC (carboxymethylbutyl hydroxychroman), gamma-CMHenHC (carboxymethylhexenyl hydroxychroman), gamma-CDMOenHC (carboxydimethyloctenyl hydroxychroman) and gamma-CDMD(en)(2)HC (carboxydimethyldecadienyl hydroxychroman). alpha-Tocotrienol yielded alpha-CEHC, alpha-CMBHC, alpha-CMHenHC and alpha-CDMOenHC, whereas alpha-CDMD(en)(2)HC could not be detected. These findings demonstrate that the trienols are metabolized essentially like tocopherols, i.e., by omega-oxidation followed by beta-oxidation of the side chain. The failure to detect CMBHC with the original double bond in the side chain reveals that auxiliary enzymes are involved, as in the metabolism of unsaturated fatty acids. CMBHC were the most abundant metabolites obtained from the tocotrienols as well as from alpha-tocopherol. Quantitatively, the tocotrienols were degraded to a larger extent than their counterparts with saturated side chains. The pronounced quantitative differences in the metabolism between individual tocopherols as well as between tocotrienols and tocopherols in vitro suggest a corresponding lack of equivalence in vivo.  (+info)

Supplementation with 3 compositionally different tocotrienol supplements does not improve cardiovascular disease risk factors in men and women with hypercholesterolemia. (5/95)

BACKGROUND: Tocotrienols have been reported to lower LDL-cholesterol and fasting glucose concentrations and to have potent antioxidant effects, but the results are contradictory. OBJECTIVE: The objective was to study the relative effect of tocotrienol supplements of different compositions (mixed alpha- plus gamma-, high gamma-, or P25-complex tocotrienol) on blood lipids, fasting blood glucose, and the excretion of 8-iso-prostaglandin F(2alpha), a measure of oxidative stress, in healthy hypercholesterolemic men and women. DESIGN: This was a double-blind, randomized, parallel-design study in which subjects (n = 67 men and women) consumed 1 of 3 commercially available tocotrienol supplements or a safflower oil placebo for 28 d. Blood and urine samples were obtained before and after the 28-d supplementation phase for analysis of fasting blood lipids, glucose, tocotrienols and tocopherols, and 8-iso-prostaglandin F(2alpha). RESULTS: Overall, serum tocotrienols were increased in subjects who consumed tocotrienols, which showed that the putatively active components were absorbed. No significant differences in mean lipid or glucose concentrations were observed among the 4 treatment groups at the end of the 28-d supplementation phase. However, when the values were expressed as a percentage change from the concentrations during the presupplementation run-in phase, LDL cholesterol increased slightly (7 +/- 2%) but significantly (P < 0.05) in the group consuming the mixed alpha- plus gamma-tocotrienol supplement when compared with LDL cholesterol in the group consuming the P25-complex tocotrienol. Neither mean concentrations nor the percentage change in 8-iso-prostaglandin F(2alpha) differed significantly among treatments. CONCLUSION: Supplementation with 200 mg tocotrienols/d from 3 commercially available sources has no beneficial effect on key cardiovascular disease risk factors in highly compliant adults with elevated blood lipid concentrations.  (+info)

Role of GTP-binding proteins in reversing the antiproliferative effects of tocotrienols in preneoplastic mammary epithelial cells. (6/95)

Tocotrienols are a subclass of vitamin E compounds that display potent anticancer activity. Determining the anticancer mechanism of action of tocotrienols will provide essential information necessary for understanding the potential health benefits of these compounds in reducing the risk of breast cancer in women. Epidermal growth factor (EGF) is a potent mitogen for normal and neoplastic mammary epithelial cells. Initial events in EGF-receptor (EGF-R) mitogenic-signalling are G-protein activation, stimulation of adenylyl cyclase and cyclic AMP (cAMP) production. Studies were conducted to determine if the antiproliferative effects of tocotrienols are associated with reduced EGF-induced G-protein and cAMP-dependent mitogenic signalling. Preneoplastic CL-S1 mouse mammary epithelial cells were grown in culture and maintained on serum-free media containing 0-25 micro mol/L tocotrienol-rich fraction of palm oil and/or different doses of pharmacological agents that alter intracellular cAMP levels. Tocotrienol-induced effects on EGF-receptor levels of tyrosine kinase activity, as well as EGF-dependent mitogen-activated pathway kinase (MAPK) and Akt activation, were determined by western blot analysis. Results demonstrate that the antiproliferative effects of tocotrienols in preneoplastic mammary epithelial cells do not reflect a reduction in EGF-receptor mitogenic responsiveness, but rather, result from an inhibition in early post-receptor events involved in cAMP production upstream from EGF-dependent MAPK and phosphoinositide 3-kinase/Akt mitogenic signalling. In summary, these data further characterise the mechanism of action of tocotrienols in suppressing preneoplastic mammary epithelial cell proliferation, and advance the current understanding of the potential health benefits of these compounds in reducing the risk of breast cancer in women.  (+info)

Comparative effects of a tocotrienol-rich fraction and tocopherol in aspirin-induced gastric lesions in rats. (7/95)

This study examined the effects of a tocotrienol-rich fraction (TRF) obtained from palm oil on the healing of aspirin-induced gastric mucosal lesions. Thirty-six male Sprague-Dawley rats (200-250 g) were randomly divided into three groups. Group I was fed a vitamin E-deficient diet (control), Group II was fed a vitamin E-deficient diet supplemented with tocopherol (300 mg/kg food) and Group III was fed a vitamin E-deficient diet supplemented with TRF (300 mg/kg food). After eight weeks, the control and treated groups received a single intragastric dose of 400 mg/kg body weight aspirin. The rats were killed 24 h after exposure to aspirin. Assessment of gastric lesions showed a lower gastric lesion index in the TRF (P = 0.0005) and tocopherol groups (P = 0.0008) compared to the control. The gastric malondialdehyde (MDA) content was also lower in the TRF (P = 0.025) and tocopherol groups (P = 0.025) compared to control. There were, however, no significant differences in the gastric lesion index and gastric MDA content between the TRF and tocopherol-fed groups. There were no significant differences in the adherent gastric mucous concentration and gastric acid concentration among all groups. We conclude that the TRF and tocopherol are equally effective in preventing aspirin-induced gastric lesions. The most probable mechanism is through their ability to limit lipid peroxidation, which is involved in aspirin-induced gastric lesions.  (+info)

Anti-angiogenic activity of tocotrienol. (8/95)

The anti-angiogenic property of vitamin E compounds, with particular emphasis on tocotrienol, has been investigated in vitro. Tocotrienol, but not tocopherol, inhibited both the proliferation and tube formation of bovine aortic endothelial cells, with delta-tocotrienol appearing the highest activity. Also, delta-tocotrienol reduced the vascular endothelial growth factor-stimulated tube formation by human umbilical vein endothelial cells. Our findings suggest that tocotrienol has potential use as a therapeutic dietary supplement for minimizing tumor angiogenesis.  (+info)