Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. (65/1957)

Smac/DIABLO is a mitochondrial protein that is released along with cytochrome c during apoptosis and promotes cytochrome c-dependent caspase activation by neutralizing inhibitor of apoptosis proteins (IAPs). We provide evidence that Smac/DIABLO functions at the levels of both the Apaf-1-caspase-9 apoptosome and effector caspases. The N terminus of Smac/DIABLO is absolutely required for its ability to interact with the baculovirus IAP repeat (BIR3) of XIAP and to promote cytochrome c-dependent caspase activation. However, it is less critical for its ability to interact with BIR1/BIR2 of XIAP and to promote the activity of the effector caspases. Consistent with the ability of Smac/DIABLO to function at the level of the effector caspases, expression of a cytosolic Smac/DIABLO in Type II cells allowed TRAIL to bypass Bcl-xL inhibition of death receptor-induced apoptosis. Combined, these data suggest that Smac/DIABLO plays a critical role in neutralizing IAP inhibition of the effector caspases in the death receptor pathway of Type II cells.  (+info)

Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. (66/1957)

BACKGROUND: The death of cardiac cells during ischemia and reperfusion is partially mediated by apoptosis, as seen, eg, in autopsy material of patients after acute myocardial infarction. METHODS AND RESULTS: To study the role of CD95/Fas/Apo1 for induction of postischemic cell death, we used an ischemia/reperfusion model of isolated rat and mouse hearts in Langendorff perfusion. In this model, caspase-dependent apoptosis occurred during postischemic reperfusion. Moreover, soluble CD95 ligand/Fas ligand was released by the postischemic hearts early after the onset of reperfusion. In addition, this ligand was synthesized de novo under these circumstances. Similar findings were observed for other "death-inducing" ligands, such as tumor necrosis factor (TNF)-alpha and TNF-related apoptosis-inducing ligand. In primary adult rat myocyte culture, hypoxia and reoxygenation caused a marked increase in sensitivity to the apoptotic effects of CD95 ligand. Isolated hearts from mice lacking functional CD95 (lpr) display marked reduction in cell death after ischemia and reperfusion compared with wild-type controls. CONCLUSIONS: These data suggest that CD95/Apo1/Fas is directly involved in cell death after myocardial ischemia. The CD95 system might thus represent a novel target for therapeutic prevention of postischemic cell death in the heart.  (+info)

The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. (67/1957)

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) (Apo2 ligand [Apo2L]) is a member of the TNF superfamily and has been shown to have selective antitumor activity. Although it is known that TRAIL (Apo2L) induces apoptosis and activates NF-kappaB and Jun N-terminal kinase (JNK) through receptors such as TRAIL-R1 (DR4) and TRAIL-R2 (DR5), the components of its signaling cascade have not been well defined. In this report, we demonstrated that the death domain kinase RIP is essential for TRAIL-induced IkappaB kinase (IKK) and JNK activation. We found that ectopic expression of the dominant negative mutant RIP, RIP(559-671), blocks TRAIL-induced IKK and JNK activation. In the RIP null fibroblasts, TRAIL failed to activate IKK and only partially activated JNK. The endogenous RIP protein was detected by immunoprecipitation in the TRAIL-R1 complex after TRAIL treatment. More importantly, we found that RIP is not involved in TRAIL-induced apoptosis. In addition, we also demonstrated that the TNF receptor-associated factor 2 (TRAF2) plays little role in TRAIL-induced IKK activation although it is required for TRAIL-mediated JNK activation. These results indicated that the death domain kinase RIP, a key factor in TNF signaling, also plays a pivotal role in TRAIL-induced IKK and JNK activation.  (+info)

Loss of caspase-8 expression in highly malignant human neuroblastoma cells correlates with resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. (68/1957)

Human neuroblastoma (NB) is a highly heterogeneous childhood cancer that is aggressively malignant or can undergo spontaneous regression that may involve apoptosis. NB-derived cell lines were tested for their sensitivity to apoptosis induced by the tumor-selective ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Noninvasive S-type cell lines (NB cell lines of substrate adherent phenotype) are highly sensitive to TRAIL, whereas invasive N-type cell lines (NB cell lines of neuronal phenotype) are resistant. Whereas both S- and N-type cell lines express TRAIL-R2, FADD, and caspase-3 and -10, only S-type cells express caspase-8. Reduced levels of caspase-8 protein were also observed in a malignant stage IV NB tumor when compared with a benign ganglioneuroma. The caspase-8 gene is not deleted in either N-type NB cell lines or high-stage NB tumors. Caspase-8 expression can be induced by demethylation with 5-aza-2'deoxycytidine, which enhances sensitivity to TRAIL. Therefore, caspase-8 expression is silenced in malignant NB, which correlates to tumor severity and resistance to TRAIL-induced apoptosis.  (+info)

Autoamplification of apoptosis following ligation of CD95-L, TRAIL and TNF-alpha. (69/1957)

CD95-L, TNF-alpha and TRAIL are death-inducing ligands (DILs) which may signal apoptosis via crosslinking of their cognate receptors. The present study shows that treatment of cells with agonistic mAB alpha APO-1 (CD95), recombinant TRAIL or TNF-alpha leads to enhanced mRNA and protein expression of each DIL with concomitant death in target cells. Immunoprecipitation of CD95-L protein from supernatant as well as neutralizing antibodies suggest DIL proteins to be cooperatively acting mediators of these cytotoxic activity. Autoamplification of the death signal was blocked in cells with a defect in apoptosis signaling either due to a dysfunctional FADD molecule or to the failure to activate JNK/SAPKs. Phosphorylation and enhanced binding of cJun and ATF-2 to DIL promoters suggest JNK/SAPKs as activators of these transcription factors following death receptor triggering. In consequence, autocrine production of DILs allows the spread of death signals to sensitive target cells. Oncogene (2000) 19, 4255 - 4262  (+info)

Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand-mediated apoptosis. (70/1957)

Dendritic cells (DCs) disappear from lymph nodes 1 to 2 days after antigen presentation, presumably by apoptosis. To evaluate the role of death ligands in elimination of DCs, we analyzed the sensitivity of human DCs to CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found mature DCs to be resistant to killing via CD95L or TRAIL, whereas only immature DCs were partially sensitive. However, all DC populations expressed CD95, TRAIL-R2, and TRAIL-R3 at comparable levels, suggesting that sensitivity to death ligand-induced DC apoptosis is not regulated at the receptor level. Interestingly, mature DCs highly expressed the caspase 8 inhibitory protein cFLIP, whereas only low levels were detected in immature DCs. Thus, death ligand sensitivity proved to be dependent on DC maturation and inversely correlated with expression levels of cFLIP. Induction of apoptosis by TRAIL or CD95L does not seem to play a role in the elimination of mature DCs, but instead might serve to regulate immature DC populations.  (+info)

Implication of multiple mechanisms in apoptosis induced by the synthetic retinoid CD437 in human prostate carcinoma cells. (71/1957)

The synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) induces apoptosis in several types of cancer cell. CD437 inhibited the growth of both androgen-dependent and -independent human prostate carcinoma (HPC) cells in a concentration-dependent manner by rapid induction of apoptosis. CD437 was more effective in killing androgen-independent HPC cells such as DU145 and PC-3 than the androgen-dependent LNCaP cells. The caspase inhibitors Z-VAD-FMK and Z-DEVD-FMK blocked apoptosis induced by CD437 in DU145 and LNCaP cells, in which increased caspase-3 activity and PARP cleavage were observed, but not in PC-3 cells, in which CD437 did not induce caspase-3 activation and PARP cleavage. Thus, CD437 can induce either caspase-dependent or caspase-independent apoptosis in HPC cells. CD437 increased the expression of c-Myc, c-Jun, c-Fos, and death receptors DR4, DR5 and Fas. CD437's potency in apoptosis induction in the different cell lines was correlated with its effects on the expression of oncogenes and death receptors, thus implicating these genes in CD437-induced apoptosis in HPC cells. However, the importance and contribution of each of these genes in different HPC cell lines may vary. Because CD437 induced the expression of DR4, DR5 and Fas, we examined the effects of combining CD437 and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and Fas ligand, respectively, in HPC cells. We found synergistic induction of apoptosis, highlighting the importance of the modulation of these death receptors in CD437-induced apoptosis in HPC cells. This result also suggests a potential strategy of using CD437 with TRAIL for treatment of HPC. Oncogene (2000) 19, 4513 - 4522.  (+info)

Mechanism of chronic obstructive uropathy: increased expression of apoptosis-promoting molecules. (72/1957)

BACKGROUND: We have demonstrated that renal tubular and interstitial cells undergo pronounced apoptosis during the course of chronic obstructive uropathy (COU). Apoptosis is a complex cellular process consisting of multiple steps, each of which is mediated by families of related molecules. These families may include receptor/ligand molecules such as Fas, Fas ligand, tumor necrosis factor receptor-1 (TNFR-1), and TNF-related apoptosis inducing ligand (TRAIL); signal transduction adapter molecules such as Fas-associated death domain (FADD), TNFR-1 associated death domain (TRADD), receptor-interacting protein (RIP), Fas-associated factor (FAF), and Fas-associated phosphatase (FAP); or effector molecules such as caspases. However, the mechanism of tubular cell apoptosis, as well as the pathogenetic relevance of these apoptosis-related molecules in COU, remains poorly understood. METHODS: Kidneys were harvested from sham-operated control mice and mice with COU created by left ureter ligation sacrificed in groups of three at days 4, 15, 30, and 45. To detect apoptotic tubular and interstitial cells, in situ end labeling of fragmented DNA was performed. To detect the expression of apoptosis-related molecules, ribonuclease protection assay was used with specific antisense RNA probes for Fas, Fas ligand, TNFR-1, TRAIL, FADD, TRADD, RIP, FAF, FAP, and caspase-8. Immunostaining for Fas, Fas ligand, TRAIL, TRADD, RIP, and caspase-8 was also performed. To assess the role of these molecules in COU-associated renal cell apoptosis, the frequencies of apoptotic tubular and interstitial cells were separately quantitated for each experimental time point, and their patterns of variation were correlated with those of apoptosis-related molecules. RESULTS: The obstructed kidneys displayed increased apoptosis of both tubular and interstitial cells. Tubular cell apoptosis appeared at day 4 after ureter ligation, peaked (fivefold of control) at day 15, and decreased gradually until the end of the experiment. In contrast, interstitial cell apoptosis sustained a progressive increase throughout the experiment. Apoptosis was minimal at all experimental time points for control and contralateral kidneys. Compared with control and contralateral kidneys, the ligated kidneys displayed a dynamic expression of mRNAs for many apoptosis-related molecules, which included an up to threefold increase for Fas, Fas ligand, TNF-R1, TRAIL, TRADD, RIP, and caspase-8, and an up to twofold increase for FADD and FAP, but there was little change for FAF. These mRNAs increased between days 4 and 15, decreased until day 30, but then increased again until day 45. The rise and fall of mRNAs between days 4 and 30 paralleled a similar fluctuation in tubular cell apoptosis in that period. The subsequent increase of mRNAs was correlated with a continuous rise of interstitial cell apoptosis. We demonstrated a positive immunostaining for Fas and Fas ligand in the tubular cells at early time points as well as in interstitial inflammatory cells at later time points. Although increased expression of TRAIL, TRADD, RIP, and caspase-8 was noted in tubular cells, there was no staining for these molecules in interstitial cells. CONCLUSION: The current study documents a dynamic expression of several molecules that are known to mediate the most crucial steps of apoptosis. It implicates these molecules in COU-associated renal cell apoptosis and in the pathogenesis of this condition. It also lays the foundation for interventional studies, including genetic engineering, to evaluate the molecular control of apoptosis associated with COU.  (+info)