A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos. (1/310)

The bone morphogenetic proteins (BMPs) play critical roles in patterning the early embryo and in the development of many organs and tissues. We have identified a new member of this multifunctional gene family, BMP-11, which is most closely related to GDF-8/myostatin. During mouse embryogenesis, BMP-11 is first detected at 9.5 dpc in the tail bud with expression becoming stronger as development proceeds. At 10.0 dpc, BMP-11 is expressed in the distal and posterior region of the limb bud and later localizes to the mesenchyme between the skeletal elements. BMP-11 is also expressed in the developing nervous system, in the dorsal root ganglia, and dorsal lateral region of the spinal cord. To assess the biological activity of BMP-11, we tested the protein in the Xenopus ectodermal explant (animal cap) assay. BMP-11 induced axial mesodermal tissue (muscle and notochord) in a dose-dependent fashion. At higher concentrations, BMP-11 also induced neural tissue. Interestingly, the activin antagonist, follistatin, but not noggin, an antagonist of BMPs 2 and 4, inhibited BMP-11 activity on animal caps. Our data suggest that in Xenopus embryos, BMP-11 acts more like activin, inducing dorsal mesoderm and neural tissue, and less like other family members such as BMPs 2, 4, and 7, which are ventralizing and anti-neuralizing signals. Taken together, these data suggest that during vertebrate embryogenesis, BMP-11 plays a unique role in patterning both mesodermal and neural tissues.  (+info)

Neural crest can form cartilages normally derived from mesoderm during development of the avian head skeleton. (2/310)

The lateral wall of the avian braincase, which is indicative of the primitive amniote condition, is formed from mesoderm. In contrast, mammals have replaced this portion of their head skeleton with a nonhomologous bone of neural crest origin. Features that characterize the local developmental environment may have enabled a neural crest-derived skeletal element to be integrated into a mesodermal region of the braincase during the course of evolution. The lateral wall of the braincase lies along a boundary in the head that separates neural crest from mesoderm, and also, neural crest cells migrate through this region on their way to the first visceral arch. Differences in the availability of one skeletogenic population versus the other may determine the final composition of the lateral wall of the braincase. Using the quail-chick chimeric system, this investigation tests if populations of neural crest, when augmented and expanded within populations of mesoderm, will give rise to the lateral wall of the braincase. Results demonstrate that neural crest can produce cartilages that are morphologically indistinguishable from elements normally generated by mesoderm. These findings (1) indicate that neural crest can respond to the same cues that both promote skeletogenesis and enable proper patterning in mesoderm, (2) challenge hypotheses on the nature of the boundary between neural crest and mesoderm in the head, and (3) suggest that changes in the allocation of migrating cells could have enabled a neural crest-derived skeletal element to replace a mesodermal portion of the braincase during evolution.  (+info)

Functional arteries grown in vitro. (3/310)

A tissue engineering approach was developed to produce arbitrary lengths of vascular graft material from smooth muscle and endothelial cells that were derived from a biopsy of vascular tissue. Bovine vessels cultured under pulsatile conditions had rupture strengths greater than 2000 millimeters of mercury, suture retention strengths of up to 90 grams, and collagen contents of up to 50 percent. Cultured vessels also showed contractile responses to pharmacological agents and contained smooth muscle cells that displayed markers of differentiation such as calponin and myosin heavy chains. Tissue-engineered arteries were implanted in miniature swine, with patency documented up to 24 days by digital angiography.  (+info)

Expression of ptc and gli genes in talpid3 suggests bifurcation in Shh pathway. (4/310)

talpid3 is an embryonic-lethal chicken mutation in a molecularly un-characterised autosomal gene. The recessive, pleiotropic phenotype includes polydactylous limbs with morphologically similar digits. Previous analysis established that hox-D and bmp genes, that are normally expressed posteriorly in the limb bud in response to a localised, posterior source of Sonic Hedgehog (Shh) are expressed symmetrically across the entire anteroposterior axis in talpid3 limb buds. In contrast, Shh expression itself is unaffected. Here we examine expression of patched (ptc), which encodes a component of the Shh receptor, and is probably itself a direct target of Shh signalling, to establish whether talpid3 acts in the Shh pathway. We find that ptc expression is significantly reduced in talpid3 embryos. We also demonstrate that talpid3 function is not required for Shh signal production but is required for normal response to Shh signals, implicating talpid3 in transduction of Shh signals in responding cells. Our analysis of expression of putative components of the Shh pathway, gli1, gli3 and coupTFII shows that genes regulated by Shh are either ectopically expressed or no longer responsive to Shh signals in talpid3 limbs, suggesting possible bifurcation in the Shh pathway. We also describe genetic mapping of gli1, ptc, shh and smoothened in chickens and confirm by co-segregation analysis that none of these genes correspond to talpid3.  (+info)

Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. (5/310)

Spinal cord oligodendrocyte precursors arise in the ventral ventricular zone as a result of local signals. Ectopic oligodendrocyte precursors can be induced by sonic hedgehog (Shh) in explants of chick dorsal spinal cord over an extended developmental period. The role of Shh during normal oligodendrocyte development is, however, unclear. Here we demonstrate that Shh is localized to the ventral spinal cord immediately prior to, and during the appearance of oligodendrocyte precursors. Continued expression of Shh is required for the appearance of spinal cord oligodendrocyte precursors as neutralization of Shh signaling both in vivo and in vitro during a defined developmental period blocked their emergence. The inhibition of oligodendrocyte precursor emergence in the absence of Shh signaling was not the result of inhibiting precursor cell proliferation, and the neutralization of Shh signaling after the emergence of oligodendrocyte precursors had no effect on the appearance of additional cells or their subsequent differentiation. Similar concentrations of Shh induce motor neurons and oligodendrocytes in dorsal spinal cord explants. However, in explants from early embryos the motor neuron lineage is preferentially expanded while in explants from older embryos the oligodendrocyte lineage is preferentially expanded.  (+info)

Timing and cell interactions underlying neural induction in the chick embryo. (6/310)

Previous studies on neural induction have identified regionally localized inducing activities, signaling molecules, potential competence factors and various other features of this important, early differentiation event. In this paper, we have developed an improved model system for analyzing neural induction and patterning using transverse blastoderm isolates obtained from gastrulating chick embryos. We use this model to establish the timing of neural specification and the spatial distribution of perinodal cells having organizer activity. We show that a tissue that acts either as an organizer or as an inducer of an organizer is spatially co-localized with the prospective neuroectoderm immediately rostral to the primitive streak in the early gastrula. As the primitive streak elongates, this tissue with organizing activity and the prospective neuroectoderm rostral to the streak separate. Furthermore, we show that up to and through the mid-primitive streak stage (i.e., stage 3c/3+), the prospective neuroectoderm cannot self-differentiate (i.e. , express neural markers and acquire neural plate morphology) in isolation from tissue with organizer activity. Signals from the organizer and from other more caudal regions of the primitive streak act on the rostral prospective neuroectoderm and the latter gains potency (i.e., is specified) by the fully elongated primitive streak stage (i.e., stage 3d). Transverse blastoderm isolates containing non-specified, prospective neuroectoderm provide an improved model system for analyzing early signaling events involved in neuraxis initiation and patterning.  (+info)

Should we clone human beings? Cloning as a source of tissue for transplantation. (7/310)

The most publicly justifiable application of human cloning, if there is one at all, is to provide self-compatible cells or tissues for medical use, especially transplantation. Some have argued that this raises no new ethical issues above those raised by any form of embryo experimentation. I argue that this research is less morally problematic than other embryo research. Indeed, it is not merely morally permissible but morally required that we employ cloning to produce embryos or fetuses for the sake of providing cells, tissues or even organs for therapy, followed by abortion of the embryo or fetus.  (+info)

Behavior of cells in artificially made cell aggregates and tissue fragments after grafting to developing hind limb buds in Xenopus laevis. (8/310)

During vertebrate limb development, the limb bud grows along the proximo-distal (P-D) direction, with the cells changing their adhesiveness. To know whether the position-related differences in cell adhesiveness are actually utilized by morphogenesis to constitute limb structures, we grafted cell aggregates made of dissociated cells derived from different positions and stages of developing hind limb buds into developing hind limb buds and observed the behavior of the cells. Cell aggregates made of dissociated mesenchymal cells from two different origins were implanted in different positions and stages of limb buds or grafted on limb stumps made by cutting. The two grafted cell populations in the aggregate always sorted out from each other, but their patterning of sorting-out was quite different according to the transplanted regions. In summary, cells in the aggregate that have closer positional identity to the transplanted site were always situated at the boundary between host and donor cells. The pattern of sorting-out seemed to be determined by the relative adhesiveness of surrounding cells to the constituent cells of the aggregates. We also transplanted fragments dissected out from different regions along the P-D axis into st. 50 limb buds. The descendants of grafted cells moved distally to the region corresponding to their positional identity and participated in the formation of more distal structures from that point. These results suggest that the difference in cell adhesiveness may probably play a role in arranging cells along the P-D axis of a developing limb bud.  (+info)