Breathing responses to small inspiratory threshold loads in humans. (1/1287)

To investiage the effect of inspiratory threshold load (ITL) on breathing, all previous work studied loads that were much greater than would be encountered under pathophysiological conditions. We hypothesized that mild ITL from 2.5 to 20 cmH2O is sufficient to modify control and sensation of breathing. The study was performed in healthy subjects. The results demonstrated that with mild ITL 1) inspiratory difficulty sensation could be perceived at an ITL of 2.5 cmH2O; 2) tidal volume increased without change in breathing frequency, resulting in hyperpnea; and 3) although additional time was required for inspiratory pressure to attain the threshold before inspiratory flow was initiated, the total inspiratory muscle contraction time remained constant. This resulted in shortening of the available time for inspiratory flow, so that the tidal volume was maintained or increased by significant increase in mean inspiratory flow. On the basis of computer simulation, we conclude that the mild ITL is sufficient to increase breathing sensation and alter breathing control, presumably aiming at maintaining a certain level of ventilation but minimizing the energy consumption of the inspiratory muscles.  (+info)

Capsaicin-sensitive C-fiber-mediated protective responses in ozone inhalation in rats. (2/1287)

To assess the role of lung sensory C fibers during and after inhalation of 1 part/million ozone for 8 h, we compared breathing pattern responses and epithelial injury-inflammation-repair in rats depleted of C fibers by systemic administration of capsaicin as neonates and in vehicle-treated control animals. Capsaicin-treated rats did not develop ozone-induced rapid, shallow breathing. Capsaicin-treated rats showed more severe necrosis in the nasal cavity and greater inflammation throughout the respiratory tract than did control rats exposed to ozone. Incorporation of 5-bromo-2'-deoxyuridine (a marker of DNA synthesis associated with proliferation) into terminal bronchiolar epithelial cells was not significantly affected by capsaicin treatment in rats exposed to ozone. However, when normalized to the degree of epithelial necrosis present in each rat studied, there was less 5-bromo-2'-deoxyuridine labeling in the terminal bronchioles of capsaicin-treated rats. These observations suggest that the ozone-induced release of neuropeptides does not measurably contribute to airway inflammation but may play a role in modulating basal and reparative airway epithelial cell proliferation.  (+info)

Breathing patterns during slow and fast ramp exercise in man. (3/1287)

Breathing frequency (fb), tidal volume (VT), and respiratory timing during slow (SR, 8 W min-1) and fast (FR, 65 W min-1) ramp exercise to exhaustion on a cycle ergometer was examined in seven healthy male subjects. Expiratory ventilation (VE), pulmonary gas exchange (VO2 and VCO2) and end-tidal gas tensions (PET,O2 and PET,CO2) were determined using breath-by-breath techniques. Arterialized venous blood was sampled from a dorsal hand vein at 2 min intervals during SR and 30 s intervals during FR and analysed for arterial plasma PCO2 (PaCO2). PET,CO2 increased with increasing work rates (WRs) below the ventilatory threshold (VT); at WRs > or = 90% VO2,max, PET,CO2 was reduced (P < 0.05) below 0 W values in SR but not in FR.fb and VT were similar for SR and FR at all submaximal WRs, resulting in a similar VE. At exhaustion VE was similar but fb was higher (P < 0.05) and VT was lower (P < 0.05) in SR (fb, 51 +/- 10 breaths min-1; VT, 2590 +/- 590 ml) than in FR (fb, 42 +/- 8 breaths min-1; VT, 3050 +/- 470 ml). The time of expiration (TE) decreased with increasing WR, but there was no difference between SR and FR. The time of inspiration (TI) decreased at exercise intensities > or = VT; at exhaustion, TI was shorter (P < 0.05) during SR (0.512 +/- 0.097 s) than during FR (0.753 +/- 0.100 s). The TI to total breath duration (TI/TTot) and the inspiratory flow (VT/TI) were similar during SR and FR at all submaximal exercise intensities; at VO2,max, TI/TTot was lower (P < 0.05) and VT/TI was higher (P < 0.05) during SR (TI/TTot, 0.473 +/- 0.030; VT/TI, 5.092 +/- 0.377 l s-1) than during FR (TI/TTot, 0.567 +/- 0.050; VT/TI, 4.117 +/- 0.635 l s-1). These results suggest that during progressive exercise, breathing pattern and respiratory timing may be determined, at least at submaximal work rates, independently of alveolar and arterial PCO2.  (+info)

Vital capacity and tidal volume preoxygenation with a mouthpiece. (4/1287)

We have measured oxygen wash-in in 20 volunteers undergoing preoxygenation with a face mask, mouthpiece alone and a mouthpiece with a noseclip, in a crossover study. Tidal volume breathing and maximal deep breath techniques were studied with each type of equipment. When tidal volume breathing was used, the face mask and mouthpiece with noseclip were comparable, but the mouthpiece alone achieved a lower end-expiratory oxygen concentration than the two other methods after 3 min (P < 0.001 and P < 0.01), and after 5 min (P < 0.05 in each case). Conversely, during preoxygenation with vital capacity breaths, the mouthpiece and mouthpiece with noseclip were comparable, and both were more effective than the face mask (P < 0.001). In a second study, 20 patients who had undergone preoxygenation before induction of anaesthesia were asked later if they would have preferred the face mask or mouthpiece for this procedure. Significantly more patients (14 of 18 who expressed a preference) favoured the mouthpiece (P < 0.05; confidence limits 0.56-0.92).  (+info)

Compensatory alveolar growth normalizes gas-exchange function in immature dogs after pneumonectomy. (5/1287)

To determine the extent and sources of adaptive response in gas-exchange to major lung resection during somatic maturation, immature male foxhounds underwent right pneumonectomy (R-Pnx, n = 5) or right thoracotomy without pneumonectomy (Sham, n = 6) at 2 mo of age. One year after surgery, exercise capacity and pulmonary gas-exchange were determined during treadmill exercise. Lung diffusing capacity (DL) and cardiac output were measured by a rebreathing technique. In animals after R-Pnx, maximal O2 uptake, lung volume, arterial blood gases, and DL during exercise were completely normal. Postmortem morphometric analysis 18 mo after R-Pnx (n = 3) showed a vigorous compensatory increase in alveolar septal tissue volume involving all cellular compartments of the septum compared with the control lung; as a result, alveolar-capillary surface areas and DL estimated by morphometry were restored to normal. In both groups, estimates of DL by the morphometric method agreed closely with estimates obtained by the physiological method during peak exercise. These data show that extensive lung resection in immature dogs stimulates a vigorous compensatory growth of alveolar tissue in excess of maturational lung growth, resulting in complete normalization of aerobic capacity and gas-exchange function at maturity.  (+info)

Expiratory time determined by individual anxiety levels in humans. (6/1287)

We have previously found that individual anxiety levels influence respiratory rates in physical load and mental stress (Y. Masaoka and I. Homma. Int. J. Psychophysiol. 27: 153-159, 1997). On the basis of that study, in the present study we investigated the metabolic outputs during tests and analyzed the respiratory timing relationship between inspiration and expiration, taking into account individual anxiety levels. Disregarding anxiety levels, there were correlations between O2 consumption (VO2) and minute ventilation (VE) and between VO2 and tidal volume in the physical load test, but no correlations were observed in the noxious audio stimulation test. There was a volume-based increase in respiratory patterns in physical load; however, VE increased not only for the adjustment of metabolic needs but also for individual mental factors; anxiety participated in this increase. In the high-anxiety group, the VE-to-VO2 ratio, indicating ventilatory efficiency, increased in both tests. In the high-anxiety group, increases in respiratory rate contributed to a VE increase, and there were negative correlations between expiratory time and anxiety scores in both tests. In an awake state, the higher neural structure may dominantly affect the mechanism of respiratory rhythm generation. We focus on the relationship between expiratory time and anxiety and show diagrams of respiratory output, allowing for individual personality.  (+info)

Evaluation of pulmonary resistance and maximal expiratory flow measurements during exercise in humans. (7/1287)

To evaluate methods used to document changes in airway function during and after exercise, we studied nine subjects with exercise-induced asthma and five subjects without asthma. Airway function was assessed from measurements of pulmonary resistance (RL) and forced expiratory vital capacity maneuvers. In the asthmatic subjects, forced expiratory volume in 1 s (FEV1) fell 24 +/- 14% and RL increased 176 +/- 153% after exercise, whereas normal subjects experienced no change in airway function (RL -3 +/- 8% and FEV1 -4 +/- 5%). During exercise, there was a tendency for FEV1 to increase in the asthmatic subjects but not in the normal subjects. RL, however, showed a slight increase during exercise in both groups. Changes in lung volumes encountered during exercise were small and had no consistent effect on RL. The small increases in RL during exercise could be explained by the nonlinearity of the pressure-flow relationship and the increased tidal breathing flows associated with exercise. In the asthmatic subjects, a deep inspiration (DI) caused a small, significant, transient decrease in RL 15 min after exercise. There was no change in RL in response to DI during exercise in either asthmatic or nonasthmatic subjects. When percent changes in RL and FEV1 during and after exercise were compared, there was close agreement between the two measurements of change in airway function. In the groups of normal and mildly asthmatic subjects, we conclude that changes in lung volume and DIs had no influence on RL during exercise. Increases in tidal breathing flows had only minor influence on measurements of RL during exercise. Furthermore, changes in RL and in FEV1 produce equivalent indexes of the variations in airway function during and after exercise.  (+info)

Dyspnoea, peripheral airway involvement and respiratory muscle effort in patients with type I diabetes mellitus under good metabolic control. (8/1287)

Dyspnoea and pulmonary dysfunction have recently been associated with Type I (insulin-dependent) diabetes mellitus. The putative role of altered pulmonary mechanics and of performance of inspiratory muscles in inducing dyspnoea has not been yet assessed in Type I diabetes. To better focus on this topic we evaluated nine patients with Type I diabetes mellitus, aged 19 to 48 years with good and stable metabolic control, without a history of smoking and microvascular complications, alongside a group of 14 healthy control subjects. In each subject, pulmonary volumes, static and dynamic compliance, pleural pressure swings (Pplsw), maximal inspiratory pressures (Pplsn), Pplsw(%Pplsn), a measure of respiratory muscle effort, and tension-time index [TTI=TI/TTOTxPplsw(%Pplsn)] were measured (TI=inspiratory time;TTOT=total time of the respiratory cycle). All subjects were studied at baseline and during hypoxic rebreathing. Patients had normal pulmonary volumes. During hypoxic rebreathing, a normal change in respiratory muscle effort [DeltaPplsw(%Pplsn)/DeltaSaO2] and DeltaTTI/DeltaSaO2, and a lower change in tidal volume versus change in oxygen saturation [DeltaVT(% vital capacity)/DeltaSaO2], resulted in a higher ratio of respiratory effort to tidal volume [Pplsw(%Pplsn)/VT(% vital capacity)], a measure of neuroventilatory dissociation of the respiratory pump. Hypoxic dyspnoea, assessed by a modified Borg scale, showed a greater rate of rise (DeltaBorg/DeltaSaO2) and a greater increase for a given level of respiratory effort in patients. Moreover, neuroventilatory dissociation related to the expression of peripheral airway involvement, as assessed in terms of low dynamic compliance, and to concurrent change in dyspnoea sensation. Patients with Type I diabetes mellitus under good metabolic control and with normal lung volumes may have abnormal peripheral airway function. The latter is thought to be responsible for the association between dyspnoea sensation and neuroventilatory dissociation.  (+info)