Selective effects of vibration on monosynaptic and late EMG responses in human soleus muscle after stimulation of the posterior tibial nerve or a tendon tap. (65/363)

In normal subjects it was possible to evoke tendon and Hoffman reflexes which were followed by late EMG responses with a latency of 150-250 ms after the reflex stimuli. Analysis of the covariations of reflexes and late responses revealed that muscle spindle sensitivity and strength of the preceding twitch are not essential factors in determining the occurrence of the late responses as opposed to excitability changes within the spinal cord. Inhibition of monosynaptic reflexes and facilitation of late EMG responses to vibration indicate a difference in central pathways. A polysynaptic pathway may be involved in the late responses.  (+info)

A new approach to estimation of the number of central synapse(s) included in the H-reflex. (66/363)

BACKGROUND: Among the main clinical applications of the H-reflex are the evaluation of the S1 nerve root conductivity such as radiculopathy and measurement of the excitability of the spinal motoneurons in neurological conditions. An attempt has been made to reduce the pathway over which H-reflex can be obtained in a hope to localize a lesion to the S1 nerve root, so the S1 central loop has been suggested. The main goal of this study is the estimation of the H-reflex number of synapse(s) for better understanding of the physiology of this practical reflex. METHODS: Forty healthy adult volunteers (22 males, 18 females) with the mean age of (37.7 +/- 10.2) years participated in this study. They were positioned comfortably in the prone position, with their feet off the edge of the plinth. Recording electrodes were positioned at the mid point of a line connecting the mid popliteal crease to the proximal flare of the medial malleolus. Stimulation was applied at the tibial nerve in the popliteal fossa and H, F and M waves were recorded. Without any change in the location of the recording electrodes, a monopolar needle was inserted as cathode at a point 1 cm medial to the posterior superior iliac spine, perpendicular to the frontal plane. The anode electrode was placed over the anterior superior iliac spine, and then M and H waves of the central loop were recorded. After processing the data, sacral cord conduction delay was determined by this formula: sacral cord conduction delay = central loop of H-reflex - (delays of the proximal motor and sensory fibers in the central loop). RESULTS: The central loop of H-reflex was (6.77 +/- 0.28) msec and the sacral cord conduction delay was (1.09 +/- 0.06) msec. CONCLUSION: The sacral cord conduction time was estimated to be about 1.09 msec in this study and because at least 1 msec is required to transmit the signal across the synapse between the sensory ending and the motor cell, so this estimated time was sufficient for only one central synapse in this reflex.  (+info)

Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. (67/363)

It has been proposed that death of inhibitory interneurons in the dorsal horn contributes to the neuropathic pain that follows partial nerve injury. In this study, we have used two approaches to test whether there is neuronal death in the dorsal horn in the spared nerve injury (SNI) model. We performed a stereological analysis of the packing density of neurons in laminas I-III 4 weeks after operation and found no reduction on the ipsilateral side compared with that seen on the contralateral side or in sham-operated or naive rats. In addition, we used two markers of apoptosis, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) staining and immunocytochemical detection of cleaved (activated) caspase-3. Neither of these methods demonstrated apoptotic neurons in the dorsal spinal cord 1 week after operation. Although TUNEL-positive cells were present throughout the gray and white matter at this stage, they were virtually all labeled with antibody against ionized calcium-binding adapter molecule 1, a marker for microglia. All animals that underwent SNI showed clear signs of tactile allodynia affecting the ipsilateral hindpaw. These results suggest that a significant loss of neurons from the dorsal horn is not necessary for the development of tactile allodynia in the SNI model.  (+info)

Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans. (68/363)

Sensory information continuously converges on the spinal cord during a variety of motor behaviours. Here, we examined presynaptic control of group Ia afferents in relation to acquisition of a novel motor skill. We tested whether repetition of two motor tasks with different degrees of difficulty, a novel visuo-motor task involving the ankle muscles, and a control task involving simple voluntary ankle movements, would induce changes in the size of the soleus H-reflex. The slope of the H-reflex recruitment curve and the H-max/M-max ratio were depressed after repetition of the visuo-motor skill task and returned to baseline after 10 min. No changes were observed after the control task. To elucidate the mechanisms contributing to the H-reflex depression, we measured the size of the long-latency depression of the soleus H-reflex evoked by peroneal nerve stimulation (D1 inhibition) and the size of the monosynaptic Ia facilitation of the soleus H-reflex evoked by femoral nerve stimulation. The D1 inhibition was increased and the femoral nerve facilitation was decreased following the visuo-motor skill task, suggesting an increase in presynaptic inhibition of Ia afferents. No changes were observed in the disynaptic reciprocal Ia inhibition. Somatosensory evoked potentials (SEPs) evoked by stimulation of the tibial nerve (TN) were also unchanged, suggesting that transmission in ascending pathways was unaltered following the visuo-motor skill task. Together these observations suggest that a selective presynaptic control of Ia afferents contributes to the modulation of sensory inputs during acquisition of a novel visuo-motor skill in healthy humans.  (+info)

Dynamic and static baroreflex control of muscle sympathetic nerve activity (SNA) parallels that of renal and cardiac SNA during physiological change in pressure. (69/363)

Despite accumulated knowledge on human baroreflex control of muscle sympathetic nerve activity (SNA), whether baroreflex control of muscle SNA parallels that of other SNAs, in particular renal and cardiac SNAs, remains unclear. Using urethane and alpha-chloralose-anesthetized, vagotomized and aortic-denervated rabbits (n = 10), we recorded muscle SNA from tibial nerve by microneurography, simultaneously with renal and cardiac SNAs by wire electrode. To produce a baroreflex open-loop condition, we isolated the carotid sinuses from systemic circulation and altered the intracarotid sinus pressure (CSP) according to a binary white noise sequence of operating pressure +/- 20 mmHg (for investigating dynamic characteristics of baroreflex) or in stepwise 20-mmHg increments from 40 to 160 mmHg (for investigating static characteristics of baroreflex). Dynamic high-pass characteristics of baroreflex control of muscle SNA, assessed by the increasing slope of transfer gain, showed that more rapid change of arterial pressure resulted in greater response of muscle SNA to pressure change and that these characteristics were similar to cardiac SNA but greater than renal SNA. However, numerical simulation based on the transfer function shows that the differences in dynamic baroreflex control at various organs result in detectable differences among SNAs only when CSP changes at unphysiologically high rates (i.e., 5 mmHg/s). On the other hand, static reverse-sigmoid characteristics of baroreflex control of muscle SNA agreed well with those of renal or cardiac SNAs. In conclusion, dynamic-linear and static-nonlinear baroreflex control of muscle SNA is similar to that of renal and cardiac SNAs under physiological pressure change.  (+info)

Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury. (70/363)

Pathological expression of movement and muscle tone in human upper motor neuron disorders has been partly associated with impaired modulation of spinal inhibitory mechanisms, such as reciprocal or presynaptic inhibition. In addition, input from specific afferent systems contributes significantly to spinal reflex circuits coupled with posture or locomotion. Accordingly, the objectives of this study were to identify the involved afferents and their relative contribution to soleus H-reflex modulation induced by changes in hip position, and to relate these effects with activity of spinal interneuronal circuits. Specifically, we investigated the actions of group I synergistic and antagonistic muscle afferents (e.g. common peroneal nerve, CPN; medial gastrocnemius, MG) and tactile plantar cutaneous afferents on the soleus H-reflex during controlled hip angle variations in 11 motor incomplete spinal cord injured (SCI) subjects. It has been postulated in healthy subjects that CPN stimulation evokes an inhibition on the soleus H-reflex at a conditioning test (C-T) interval of 2-4 ms. This short latency reflex depression is caused mainly by activation of the reciprocal Ia inhibitory pathway. At longer C-T intervals (beyond 30 ms) the soleus H-reflex is again depressed, and is generally accepted to be caused by presynaptic inhibition of soleus Ia afferents. Similarly, MG nerve stimulation depresses soleus H-reflex excitability at the C-T interval of 6 ms, involving the pathway of non-reciprocal group I inhibition, while excitation of plantar cutaneous afferents affects the activity of spinal reflex pathways in the extensors. In this study, soleus H-reflexes recorded alone or during CPN stimulation at either short (2, 3, 4 ms) or long (80, 100, 120 ms) C-T intervals, and MG nerve stimulation delivered at 6 ms were elicited via conventional methods and similar to those adopted in studies conducted in healthy subjects. Plantar skin conditioning stimulation was delivered through two surface electrodes placed on the metatarsals at different C-T intervals ranging from 3 to 90 ms. CPN stimulation at either short or long C-T intervals and MG nerve stimulation resulted in a significant facilitation of the soleus H-reflex, regardless of the hip angle tested. Plantar skin stimulation delivered with hip extended at 10 degrees induced a bimodal facilitation reflex pattern, while with hip flexed (10 degrees , 30 degrees ) the reflex facilitation increased with increments in the C-T interval. This study provides evidence that in human chronic SCI, classically key inhibitory reflex actions are switched to facilitatory, and that spinal processing of plantar cutaneous sensory input and actions of synergistic/antagonistic muscle afferents interact with hip proprioceptive input to facilitate soleus H-reflex excitability. These actions might be associated with the pathological expression of neural control of movement in individuals with SCI, and potentially could be considered in rehabilitation programs geared to restore sensorimotor function in these patients.  (+info)

Renal sympathetic and circulatory responses to activation of the exercise pressor reflex in rats. (71/363)

We investigated the role played by the exercise pressor reflex in sympathetic regulation of the renal circulation in rats. In mid-collicular decerebrate rats, mean arterial pressure (MAP), heart rate (HR), left renal cortical blood flow (RCBF) and left renal sympathetic nerve activity (RSNA) were recorded before and during 30 s of static contraction of the left triceps surae muscles evoked by electrical stimulation of the tibial nerve, which activates both metabo- and mechanosensitive muscle afferents, and during 30 s of passive stretch of the left Achilles tendon, which selectively activates mechanosensitive muscle afferents. Static contraction (n = 17, +344 +/- 34 g developed tension) significantly (P < 0.05) increased MAP (+14 +/- 3 mmHg), HR (+6 +/- 1 beats min(-1)) and RSNA (n = 11, +19 +/- 5%) and significantly decreased renal cortical vascular conductance (RCVC, n = 11, -11 +/- 2%). Passive stretch (n = 20, +378 +/- 11 g) also significantly increased MAP (+11 +/- 2 mmHg), HR (+7 +/- 2 beats min(-1)) and RSNA (n = 15, +14 +/- 4%) and significantly decreased RCVC (n = 11, -12 +/- 3%). RCBF showed no significant changes during static contraction or passive stretch. Renal denervation abolished the decrease in RCVC during contraction (n = 12) or stretch (n = 13). These data indicate that both the exercise pressor reflex and its mechanically sensitive component, the muscle mechanoreflex, induced renal cortical vasoconstriction through sympathetic activation in rats.  (+info)

Upregulation of the voltage-gated sodium channel beta2 subunit in neuropathic pain models: characterization of expression in injured and non-injured primary sensory neurons. (72/363)

The development of abnormal primary sensory neuron excitability and neuropathic pain symptoms after peripheral nerve injury is associated with altered expression of voltage-gated sodium channels (VGSCs) and a modification of sodium currents. To investigate whether the beta2 subunit of VGSCs participates in the generation of neuropathic pain, we used the spared nerve injury (SNI) model in rats to examine beta2 subunit expression in selectively injured (tibial and common peroneal nerves) and uninjured (sural nerve) afferents. Three days after SNI, immunohistochemistry and Western blot analysis reveal an increase in the beta2 subunit in both the cell body and peripheral axons of injured neurons. The increase persists for >4 weeks, although beta2 subunit mRNA measured by real-time reverse transcription-PCR and in situ hybridization remains unchanged. Although injured neurons show the most marked upregulation,beta2 subunit expression is also increased in neighboring non-injured neurons and a similar pattern of changes appears in the spinal nerve ligation model of neuropathic pain. That increased beta2 subunit expression in sensory neurons after nerve injury is functionally significant, as demonstrated by our finding that the development of mechanical allodynia-like behavior in the SNI model is attenuated in beta2 subunit null mutant mice. Through its role in regulating the density of mature VGSC complexes in the plasma membrane and modulating channel gating, the beta2 subunit may play a key role in the development of ectopic activity in injured and non-injured sensory afferents and, thereby, neuropathic pain.  (+info)