In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis. (41/235)

We investigated the effects of phenolic and phenol compounds on 3,3',5-L-125I-triiodothyronine (125I-T3) binding to purified Xenopus laevis transthyretin (xTTR) and to the ligand-binding domain of X. laevis thyroid hormone receptor beta (xTR LBD), on T3-induced metamorphosis in X. laevis tadpoles and on the induction of T3-dependent reporter gene in a X. laevis cell line. Of the halogenated phenolic and phenol compounds tested, 3,3',5-trichlorobisphenol A and 2,4,6-triiodophenol, respectively, were the most potent competitors of 125I-T3 binding to both xTTR and xTR LBD. Most of the halogenated compounds had stronger interactions with xTTR than with xTR LBD. Generally, chlorinated derivatives with a greater degree of chlorination were more efficient competitors of T3 binding to xTTR and xTR LBD. Structures with a halogen in either ortho position or in both ortho positions, with respect to the hydroxy group, were more efficient competitors. 3,3',5-Trichlorobisphenol A and 2,4,6-triiodophenol acted as T3 antagonists in the X. laevis tadpole metamorphosis assay. Interestingly, o-t-butylphenol and 2-isopropylphenol, for which xTTR and xTR LBD had weak or no significant affinity, showed T3 antagonist activity in the metamorphosis assay. T3 antagonist activities of all these chemicals except for o-t-butylphenol were verified by T3-dependent reporter gene assay. Our results suggest that some phenolic and phenol compounds target the process of T3 binding to xTTR and xTR and/or an unknown process, and that they interfere with the intracellular T3 signaling pathway.  (+info)

An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. (42/235)

Thyroid-stimulating hormone (TSH)-secreting tumors (TSH-omas) are pituitary tumors that constitutively secrete TSH. The molecular genetics underlying this abnormality are not known. We discovered that a knock-in mouse harboring a mutated thyroid hormone receptor (TR) beta (PV; TRbeta(PV/PV) mouse) spontaneously developed TSH-omas. TRbeta(PV/PV) mice lost the negative feedback regulation with highly elevated TSH levels associated with increased thyroid hormone levels (3,3',5-triiodo-l-thyronine [T3]). Remarkably, we found that mice deficient in all TRs (TRalpha1(-/-) TRbeta(-/-)) had similarly increased T3 and TSH levels, but no discernible TSH-omas, indicating that the dysregulation of the pituitary-thyroid axis alone is not sufficient to induce TSH-omas. Comparison of gene expression profiles by cDNA microarrays identified overexpression of cyclin D1 mRNA in TRbeta(PV/PV) but not in TRalpha1(-/-) TRbeta(-/-) mice. Overexpression of cyclin D1 protein led to activation of the cyclin D1/cyclin-dependent kinase/retinoblastoma protein/E2F pathway only in TRbeta(PV/PV) mice. The liganded TRbeta repressed cyclin D1 expression via tethering to the cyclin D1 promoter through binding to the cyclic AMP response element-binding protein. That repression effect was lost in mutant PV, thereby resulting in constitutive activation of cyclin D1 in TRbeta(PV/PV) mice. The present study revealed a novel molecular mechanism by which an unliganded TRbeta mutant acts to contribute to pituitary tumorigenesis in vivo and provided mechanistic insights into the understanding of pathogenesis of TSH-omas in patients.  (+info)

The CYP2B2 phenobarbital response unit contains binding sites for hepatocyte nuclear factor 4, PBX-PREP1, the thyroid hormone receptor beta and the liver X receptor. (43/235)

A 163 bp enhancer in the CYP2B2 5' flank confers PB (phenobarbital) inducibility and constitutes a PBRU (PB response unit). The PBRU contains several transcription factor binding sites, including NR1, NR2 and NR3, which are direct repeats separated by 4 bp of the nuclear receptor consensus half-site AGGTCA, as well as an ER (everted repeat) separated by 7 bp (ER-7). Constitutive androstane receptor (CAR)-RXR (retinoic X receptor) heterodimers are known to bind to NR1, NR2 and NR3. Electrophoretic mobility-shift analysis using nuclear extracts from livers of untreated or PB-treated rats revealed binding of several other proteins to different PBRU elements. Using supershift analysis and in vitro coupled transcription and translation, the proteins present in four retarded complexes were identified as TRbeta (thyroid hormone receptor beta), LXR (liver X receptor), HNF-4 (hepatocyte nuclear factor 4) and heterodimers of PBX-PREP1 (pre-B cell homoeobox-Pbx regulatory protein 1). LXR-RXR heterodimers bound to NR3 and TRbeta bound to NR3, NR1 and ER-7, whereas the PBX-PREP1 site is contained within NR2. The HNF-4 site overlaps with NR1. A mutation described previously, GRE1m1, which decreases PB responsiveness, increased the affinity of this site for HNF-4. The PBRU also contains a site for nuclear factor 1. The PBRU thus contains a plethora of transcription factor binding sites. The profiles of transcription factor binding to NR1 and NR3 were quite similar, although strikingly different from, and more complex than, that of NR2. This parallels the functional differences in conferring PB responsiveness between NR1 and NR3 on the one hand, and NR2 on the other.  (+info)

Thyroid hormone regulates tubulin expression in mammalian liver. Effects of deleting thyroid hormone receptor-alpha or -beta. (44/235)

Microtubules are made from polymers of alpha/beta dimers. We have observed in rat liver that, on the first day after birth, alpha-subunit is relatively high and beta-subunit low with respect to adult values. In the hypothyroid neonate, both subunits were found to be low, therefore indicating that thyroid hormone (TH) regulates these developmental changes. TH was also found to activate tubulin expression in adult liver, especially beta-subunit. To investigate the role of TH receptors (TRs) in tubulin expression, we analyzed mice lacking TRalpha or TRbeta compared with the wild type in both normal and TH-deprived adult animals. The results suggest that, in vivo, beta-tubulin protein expression in the liver is primarily under TRbeta positive control. In euthyroid mice lacking TRbeta, beta-tubulin expression was low. However, in the corresponding hypothyroid animals, it was found increased, therefore suggesting that the unliganded TRalpha might also upregulate beta-tubulin expression. Accordingly, TH administration to hypothyroid TRbeta-deprived mice reduced their high beta-tubulin expression. In parallel, the relatively high messenger level observed with these hypothyroid animals was reduced to the euthyroid level after T(3) treatment. The microtubular network of the mutant livers appeared, by immunofluorescence confocal microscopy, generally disorganized and drastically reduced in beta-tubulin in mice lacking TRbeta. In conclusion, our results indicate that beta-tubulin is critically controlled by TRbeta in the liver and that both TRs are probably needed to maintain the microtubular network organization of the liver.  (+info)

Thyroid hormone can increase estrogen-mediated transcription from a consensus estrogen response element in neuroblastoma cells. (45/235)

Thyroid hormones (T) and estrogens (E) are nuclear receptor ligands with at least two molecular mechanisms of action: (i) relatively slow genomic effects, such as the regulation of transcription by cognate T receptors (TR) and E receptors (ER); and (ii) relatively rapid nongenomic effects, such as kinase activation and calcium release initiated at the membrane by putative membrane receptors. Genomic and nongenomic effects were thought to be disparate and independent. However, in a previous study using a two-pulse paradigm in neuroblastoma cells, we showed that E acting at the membrane could potentiate transcription from an E-driven reporter gene in the nucleus. Because both T and E can have important effects on mood and cognition, it is possible that the two hormones can act synergistically. In this study, we demonstrate that early actions of T via TRalpha1 and TRbeta1 can potentiate E-mediated transcription (genomic effects) from a consensus E response element (ERE)-driven reporter gene in transiently transfected neuroblastoma cells. Such potentiation was reduced by inhibition of mitogen-activated protein kinase. Using phosphomutants of ERalpha, we also show that probable mitogen-activated protein kinase phosphorylation sites on the ERalpha, the serines at position 167 and 118, are important in TRbeta1-mediated potentiation of ERalpha-induced transactivation. We suggest that crosstalk between T and E includes potential interactions through both nuclear and membrane-initiated molecular mechanisms of hormone signaling.  (+info)

Resistance to thyroid hormone in a Chinese family with R429Q mutation in the thyroid hormone receptor beta gene. (46/235)

The combination of elevated serum levels of free thyroid hormones with non-suppressed thyroid-stimulating hormone suggests the differential diagnoses of resistance to thyroid hormone or thyroid-stimulating hormone-secreting pituitary tumour. Clinical differentiation of these two conditions can be difficult, because patients with thyroid hormone resistance may exhibit various combinations of hypermetabolic and hypometabolic features, and laboratory results have limited sensitivity and specificity. We report a case of resistance to thyroid hormone in a Chinese family that illustrates this difficulty. The diagnosis could only be confirmed by the identification of a known disease-causing mutation in the thyroid hormone receptor beta gene in peripheral leukocytes. Availability of genetic tests will identify more cases in the future and improve our understanding of this condition.  (+info)

Rearrangements in thyroid hormone receptor charge clusters that stabilize bound 3,5',5-triiodo-L-thyronine and inhibit homodimer formation. (47/235)

In this study, we investigated how thyroid hormone (3,5',5-triiodo-l-thyronine, T3) inhibits binding of thyroid hormone receptor (TR) homodimers, but not TR-retinoid X receptor heterodimers, to thyroid hormone response elements. Specifically we asked why a small subset of TRbeta mutations that arise in resistance to thyroid hormone syndrome inhibit both T3 binding and formation of TRbeta homodimers on thyroid hormone response elements. We reasoned that these mutations may affect structural elements involved in the coupling of T3 binding to inhibition of TR DNA binding activity. Analysis of TR x-ray structures revealed that each of these resistance to thyroid hormone syndrome mutations affects a cluster of charged amino acids with potential for ionic bond formation between oppositely charged partners. Two clusters (1 and 2) are adjacent to the dimer surface at the junction of helices 10 and 11. Targeted mutagenesis of residues in Cluster 1 (Arg338, Lys342, Asp351, and Asp355) and Cluster 2 (Arg429, Arg383, and Glu311) confirmed that the clusters are required for stable T3 binding and for optimal TR homodimer formation on DNA but also revealed that different arrangements of charged residues are needed for these effects. We propose that the charge clusters are homodimer-specific extensions of the dimer surface and further that T3 binding promotes specific rearrangements of these surfaces that simultaneously block homodimer formation on DNA and stabilize the bound hormone. Our data yield insight into the way that T3 regulates TR DNA binding activity and also highlight hitherto unsuspected T3-dependent conformational changes in the receptor ligand binding domain.  (+info)

Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development. (48/235)

Numerous coactivators that bind nuclear hormone receptors have been isolated and characterized in vitro. Relatively few studies have addressed the developmental roles of these cofactors in vivo. By using the total dependence of amphibian metamorphosis on thyroid hormone (T3) as a model, we have investigated the role of steroid receptor coactivator 3 (SRC3) in gene activation by thyroid hormone receptor (TR) in vivo. First, expression analysis showed that SRC3 was expressed in all tadpole organs analyzed. In addition, during natural as well as T3-induced metamorphosis, SRC3 was up-regulated in both the tail and intestine, two organs that undergo extensive transformations during metamorphosis and the focus of the current study. We then performed chromatin immunoprecipitation assays to investigate whether SRC3 is recruited to endogenous T3 target genes in vivo in developing tadpoles. Surprisingly, we found that SRC3 was recruited in a gene- and tissue-dependent manner to target genes by TR, both upon T3 treatment of premetamorphic tadpoles and during natural metamorphosis. In particular, in the tail, SRC3 was not recruited in a T3-dependent manner to the target TRbetaA promoter, suggesting either no recruitment or constitutive association. Finally, by using transgenic tadpoles expressing a dominant negative SRC3 (F-dnSRC3), we demonstrated that F-dnSRC3 was recruited in a T3-dependent manner in both the intestine and tail, blocking the recruitment of endogenous coactivators and histone acetylation. These results suggest that SRC3 is utilized in a gene- and tissue-specific manner by TR during development.  (+info)