Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. (57/237)

Productive cis folding by the chaperonin GroEL is triggered by the binding of ATP but not ADP, along with cochaperonin GroES, to the same ring as non-native polypeptide, ejecting polypeptide into an encapsulated hydrophilic chamber. We examined the specific contribution of the gamma-phosphate of ATP to this activation process using complexes of ADP and aluminium or beryllium fluoride. These ATP analogues supported productive cis folding of the substrate protein, rhodanese, even when added to already-formed, folding-inactive cis ADP ternary complexes, essentially introducing the gamma-phosphate of ATP in an independent step. Aluminium fluoride was observed to stabilize the association of GroES with GroEL, with a substantial release of free energy (-46 kcal/mol). To understand the basis of such activation and stabilization, a crystal structure of GroEL-GroES-ADP.AlF3 was determined at 2.8 A. A trigonal AlF3 metal complex was observed in the gamma-phosphate position of the nucleotide pocket of the cis ring. Surprisingly, when this structure was compared with that of the previously determined GroEL-GroES-ADP complex, no other differences were observed. We discuss the likely basis of the ability of gamma-phosphate binding to convert preformed GroEL-GroES-ADP-polypeptide complexes into the folding-active state.  (+info)

Azotobacter vinelandii rhodanese: selenium loading and ion interaction studies. (58/237)

Rhodanese is a sulfurtransferase which in vitro catalyzes the transfer of a sulfane sulfur from thiosulfate to cyanide. Ionic interactions of the prokaryotic rhodanese-like protein from Azotobacter vinelandii were studied by fluorescence and NMR spectroscopy. The catalytic Cys230 residue of the enzyme was selectively labelled using [15N]Cys, and changes in 1H and 15N NMR resonances on addition of different ions were monitored. The results clearly indicate that the sulfur transfer is due to a specific reaction of the persulfurated Cys residue with a sulfur acceptor such as cyanide and not to the presence of the anions. Moreover, the 1H-NMR spectrum of a defined spectral region is indicative of the status of the enzyme and can be used to directly monitor sulfur loading even at low concentrations. Selenium loading by the addition of selenodiglutathione was monitored by fluorescence and NMR spectroscopy. It was found to involve a specific interaction between the selenodiglutathione and the catalytic cysteine residue of the enzyme. These results indicate that rhodanese-like proteins may function in the delivery of reactive selenium in vivo.  (+info)

Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. (59/237)

In all three kingdoms of life chaperonins assist the folding of a range of newly synthesized proteins. As shown recently, Archaea of the genus Methanosarcina contain both group I (GroEL/GroES) and group II (thermosome) chaperonins in the cytosol. Here we report on a detailed functional analysis of the archaeal GroEL/GroES system of Methanosarcina mazei (Mm) in comparison to its bacterial counterpart from Escherichia coli (Ec). We find that the groESgroEL operon of M. mazei is unable to functionally replace groESgroEL in E. coli. However, the MmGroES protein can largely complement a mutant EcGroES protein in vivo. The ATPase rate of MmGroEL is very low and the dissociation of MmGroES from MmGroEL is 15 times slower than for the EcGroEL/GroES system. This slow ATPase cycle results in a prolonged enclosure time for model substrate proteins, such as rhodanese, in the MmGroEL:GroES folding cage before their release into the medium. Interestingly, optimal functionality of MmGroEL/GroES and its ability to encapsulate larger proteins, such as malate dehydrogenase, requires the presence of ammonium sulfate in vitro. In the absence of ammonium sulfate, malate dehydrogenase fails to be encapsulated by GroES and rather cycles on and off the GroEL trans ring in a non-productive reaction. These results indicate that the archaeal GroEL/GroES system has preserved the basic encapsulation mechanism of bacterial GroEL and suggest that it has adjusted the length of its reaction cycle to the slower growth rates of Archaea. Additionally, the release of only the folded protein from the GroEL/GroES cage may prevent adverse interactions of the GroEL substrates with the thermosome, which is not normally located within the same compartment.  (+info)

Functional diversity of the rhodanese homology domain: the Escherichia coli ybbB gene encodes a selenophosphate-dependent tRNA 2-selenouridine synthase. (60/237)

Escherichia coli has eight genes predicted to encode sulfurtransferases having the active site consensus sequence Cys-Xaa-Xaa-Gly. One of these genes, ybbB, is frequently found within bacterial operons that contain selD, the selenophosphate synthetase gene, suggesting a role in selenium metabolism. We show that ybbB is required in vivo for the specific substitution of selenium for sulfur in 2-thiouridine residues in E. coli tRNA. This modified tRNA nucleoside, 5-methylaminomethyl-2-selenouridine (mnm(5)se(2)U), is located at the wobble position of the anticodons of tRNA(Lys), tRNA(Glu), and tRNA(1)(Gln). Nucleoside analysis of tRNAs from wild-type and ybbB mutant strains revealed that production of mnm(5)se(2)U is lost in the ybbB mutant but that 5-methylaminomethyl-2-thiouridine, the mnm(5)se(2)U precursor, is unaffected by deletion of ybbB. Thus, ybbB is not required for the initial sulfurtransferase reaction but rather encodes a 2-selenouridine synthase that replaces a sulfur atom in 2-thiouridine in tRNA with selenium. Purified 2-selenouridine synthase containing a C-terminal His(6) tag exhibited spectral properties consistent with tRNA bound to the enzyme. In vitro mnm(5)se(2)U synthesis is shown to be dependent on 2-selenouridine synthase, SePO(3), and tRNA. Finally, we demonstrate that the conserved Cys(97) (but not Cys(96)) in the rhodanese sequence motif Cys(96)-Cys(97)-Xaa-Xaa-Gly is required for 2-selenouridine synthase in vivo activity. These data are consistent with the ybbB gene encoding a tRNA 2-selenouridine synthase and identifies a new role for the rhodanese homology domain in enzymes.  (+info)

Cardiolipin liposomes sequester a reactivatable partially folded rhodanese intermediate. (61/237)

The interaction was studied between the mitochondrial enzyme thiosulfate sulfurtransferase and liposomes, in the form of large unilamellar vesicles (LUV), prepared from either cardiolipin (CL), PtdCho or PtdSer. At equivalent concentrations of lipid, more partially folded thiosulfate sulfurtransferase bound to CL/LUV than to PtdSer/LUV, and only traces were bound to PtdCho/LUV. Native thiosulfate sulfurtransferase did not bind to any of these LUV. We show that CL/LUV-sequestered thiosulfate sulfurtransferase is inactive but may be reactivated (approximately 56%) with the aid of detergents, thiosulfate, beta-mercaptoethanol and phosphate buffer. Reactivations in the presence of PtdSer/LUV or PtdCho/LUV was only 9% or 1%, respectively. Analysis of the complex by protease digestion and fluorescence spectroscopy indicated that thiosulfate sulfurtransferase was held by CL/LUV and PtdSer/LUV as a folding intermediate. Data presented here suggest that detergents may not interact directly with the protein, but, rather, their primary role in reactivation is to disrupt the LUV, allowing flexibility to the anchored thiosulfate sulfurtransferase molecule, thereby promoting folding. These studies complement other reports which imply a possible role for CL in protein translocation across the mitochondria, since we find that CL binds to thiosulfate sulfurtransferase and sequesters it in a translocation-competent prefolded conformation, which may readily lead to a correctly folded enzyme.  (+info)

73-kDa molecular chaperone HSP73 is a direct target of antibiotic gentamicin. (62/237)

Although gentamicin (GM) has been used widely as an antibiotic, the specific binding protein of the drug has not yet been understood sufficiently. Here we show that GM specifically associates with the 73-kDa molecular chaperone HSP73 and reduces its chaperone activity in vitro. In the present study, we investigated GM-specific binding proteins using a GM-affinity column and porcine kidney cytosol. After washing the column, only the 73-kDa protein was eluted from the column by the addition of 10 mm GM. None of the other proteins were found in the eluant. Upon immunoblotting, the protein was identical to HSP73. Upon CD spectrum analysis, the binding of GM to HSP73 resulted in a conformational change in the protein. Although HSP73 prevents aggregation of unfolded rhodanese in vitro, the chaperone activity of HSP73 was suppressed in the presence of GM. Using limited proteolysis of HSP73 by TPCK-trypsin, the GM binding site is a COOH-terminal for one third of the protein known to be a peptide-binding domain. During immunohistochemistry, HSP73 and GM were co-localized in enlarged lysosomes of rat kidneys with GM-induced acute tubular injury in vivo. Our results suggest that the specific association between HSP73 and GM may reduce the chaperone activity of HSP73 in vitro and/or in vivo, and this may have an interaction with GM toxicity in kidneys with GM-induced acute tubular injury.  (+info)

Nitric oxide donor sodium nitroprusside dilates rat small arteries by activation of inward rectifier potassium channels. (63/237)

The role of vascular smooth muscle inward rectifier K+ (K(IR)) channels in the mechanisms underlying vasodilation is still unclear. The hypothesis that K(IR) channels are involved in sodium nitroprusside (SNP)-induced dilation of rat-tail small arteries was tested. SNP relaxed tail small arteries with an EC50 of 2.6x10(-8) mol/L. Endothelium removal did not attenuate this effect. Vessel pretreatment with hydroxocobalamin, a nitric oxide (NO) scavenger, but not with rhodanese and sodium thiosulfate, inactivators of cyanide (CN), abolished the SNP effect. Vessel pretreatment with 10(-5) mol/L Ba2+, a specific blocker of K(IR) channels at micromolar concentrations, reduced the SNP effect. Low concentrations of K+ dilated the vessels; this effect was attenuated largely after pretreatment with 3x10(-5) mol/L Ba2+. In freshly isolated smooth muscle cells, a barium-sensitive current was observed at potentials negative to the potassium equilibrium potential. Application of 10(-4) mol/L SNP increased the barium-sensitive current 1.79+/-0.23-fold at -100 mV and hyperpolarized the membrane potential by 8.6+/-0.5 mV. In tissue from freshly dissected vessels, transcripts for K(IR) 2.1 and 2.2, but not for K(IR) 2.3 and 2.4, were found. However, only K(IR) 2.1 antibodies immunostained the tunica media of the vessel. These data suggest that vascular smooth muscle K(IR) 2.1 channels are involved in the SNP-induced dilation of rat-tail small arteries.  (+info)

Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. (64/237)

Recent studies have identified the human genes involved in the biosynthesis of the molybdenum cofactor. The human MOCS3 protein contains an N-terminal domain similar to the Escherichia coli MoeB protein and a C-terminal segment displaying similarities to the sulfurtransferase rhodanese. The MOCS3 protein is believed to catalyze both the adenylation and the subsequent generation of a thiocarboxylate group at the C terminus of the smaller subunit of molybdopterin (MPT) synthase. The MOCS3 rhodanese-like domain (MOCS3-RLD) was purified after heterologous expression in E. coli and was shown to catalyze the transfer of sulfur from thiosulfate to cyanide. In a defined in vitro system for the generation of MPT from precursor Z, the sulfurated form of MOCS3-RLD was able to provide the sulfur for the thiocarboxylation of MOCS2A, the small MPT synthase subunit in humans. Mutation of the putative persulfide-forming active-site cysteine residue C412 abolished the sulfurtransferase activity of MOCS3-RLD completely, showing the importance of this cysteine residue for catalysis. In contrast to other mammalian rhodaneses, which are mostly localized within mitochondria, MOCS3 in addition to the subunits of MPT synthase are localized in the cytosol.  (+info)